

Impact of atmospheric Nitrogen deposition on upland and alpine ecosystems

Background

- Ecosystems in the low-alpine zone are exposed to relatively high levels of nitrogen (N) deposition compared to surrounding lowland areas due to the high levels of rainfall (the rain contains the N).
- Nitrogen deposition has the potential to alter plant community composition and ecosystem function.
- Alpine areas are important biodiversity reservoirs.
- High levels of nitrogen (N) deposition and long-term heavy grazing pressures are thought to have caused severe degradation and loss of some alpine plant communities in the UK.

Changes in vegetation caused by nitrogen deposition

The following key impacts of N deposition on vegetation communities have been found from manipulative experimental studies combined with analysis of Scottish alpine vegetation data collected 1963–1987 compared to current vegetation at the same locations.

- Grass species cover increases with increasing N deposition while heather and related shrubs tend to decrease.
- Some northern and alpine plant species decline with increasing N deposition.
- Lowland generalist species tend to increase with N deposition resulting in increased homogeneity of vegetation.
- Lichen species richness declines with increasing N deposition; lichens were found to be one of the most sensitive groups of plants to increased N deposition.
- The moss mat covering the tops of many UK mountains is in poor condition (thin, fragmented or absent), probably due to combinations of N deposition and grazing. This moss mat provides a key habitat for insects which are the food source for many mountain birds, such as Dotterel.
- The impacts of nitrogen deposition on vegetation interact with management practices such as burning and grazing and the impacts of climate change, so the relationships can be complex.

Changes in fungi

• Fungi are an important component of nitrogen cycling in alpine habitats. Shifts in mycorrhizal fungal communities are observed when the plant populations they associate with are degraded.

Changes in water and soil processes

- Alpine heathlands, which occupy the headwaters of many rivers, have limited potential to retain deposited N and may rapidly become N saturated, leaking N into downstream communities and surface waters. This is most likely to be a problem in soils with low phosphorus content.
- High nitrogen deposition results in acidification of the soil and soil water.

Long-term impacts and policy/legislation

- Thresholds for effects observed in this study support the definition of a low 'critical load' for these sensitive alpine communities (<7.5 kg N ha-¹ y-¹) and suggest that the concentrations of N currently encountered across most of the UK have detrimental effects on the growth of sensitive species.
- Nitrogen emissions throughout Europe are slowly declining but the effects of elevated nitrogen loading (cumulative N deposition over time) will not disappear overnight. Recovery of mountain biodiversity and soil and water quality from eutrophication is likely to be a slow process, but one which can be influenced by targeted management techniques employed at a local level, as well as by stringent legislation to reduce emissions at source.

On going research

- Assessing the rate of recovery of alpine heaths following a decline in N deposition.
- Extending our resurvey and analysis of long term (40-50 years) vegetation change data to a wider range of Scottish habitats.
- Research investigating direct links between nitrogen deposition and alpine fungal communities is ongoing.

Contact: Dr Ruth Mitchell (ruth.mitchell@hutton.ac.uk)