Skip to navigation Skip to content

RD 1.1.3 Soil and net GHG emissions

RD 1.1.3 Soil and net GHG emissions

Scotland is a small contributor to overall global Greenhouse Gas (GHG) emissions but one of the higher per capita emitters of GHG in the world. Taking responsibility to reduce GHG emissions, Scotland passed the Climate Change (Scotland) Act in 2009, committing the country to a target for reduction of GHG emissions of 42% by 2020 and 80% by 2050, targets that are amongst the highest in the world. Going further, legislation is currently going through the Scottish Parliament to set even more ambitious new targets for GHG emissions with a "net-zero" date being set for 2045. The land-use sector has an important role to play in helping to reduce net GHG emissions, both by reducing emissions and by sequestering CO2 into the soil and vegetation. Restoration of degraded peatlands has been recognised as a cost-effective way of reducing C losses and sequestering CO2 from the atmosphere and is in the process of being incorporated into national GHG accounting methods. Similarly, targets for woodland expansion reflect a policy mechanism to help store C in landscapes. The work proposed in this RD will quantify GHG emissions from various ecosystems and identify management practices which reduce GHG and sequester carbon into soil.


Aim of Research

To improve understanding of the impacts of extensive land use and management on greenhouse gas dynamics The work will focus on the impacts of land use, including the agricultural intensification of extensive/upland soils and the management of semi-natural ecosystems such as peatlands and moorlands (wet and dry heathlands excluding areas of deep peat) on soil carbon stocks and greenhouse gas dynamics to reduce the uncertainty in our estimates of GHG uptake and release from these systems and to enhance our understanding of the impacts of forest-to-bog peatland restoration and moorland management on long-term rates of C sequestration.

The main objectives of this RD are:

  1. Analyse historical trends in soil organic carbon and soil properties due to agricultural intensification and other land use changes in Scotland.
  2. Quantify GHG uptake and release in peatland ecosystems, and enhance our process-based understanding of carbon and nitrogen dynamics in these ecosystems.
  3. Incorporate this process understanding into existing simulation models and use these models to identify hot-spots of GHG emissions and to evaluate the impacts of land use and climate change scenarios on these systems.

 

Further information

General information on the Scottish Environment, Food and Agriculture Research Institutes (SEFARI) and the Scottish Government funded Strategic Research Portfolio can be found on the SEFARI website.
Within this, there are webpages providing summary overview information for each of the Research Deliverables (RDs) within the Strategic Programme. The page for RD 1.1.3 Soil and net GHG emissions is available here and includes annual progress and highlights summaries, key outputs and links to case studies and key research staff.
 

 

Project Information
Project Type: 
Active Project
SEFARI – Scottish Environment, Food and Agriculture Research InstitutesSEFARI is the collective of six Scottish world-leading Research Institutes working across the spectrum of environment, land, food, agriculture and communities – all topics which affect how we live our lives, in Scotland and beyond.

Research

Areas of Interest


Printed from /research/srp2016-21/wp113-soil-and-net-ghg-emissions on 18/04/24 10:27:53 PM

The James Hutton Research Institute is the result of the merger in April 2011 of MLURI and SCRI. This merger formed a new powerhouse for research into food, land use, and climate change.