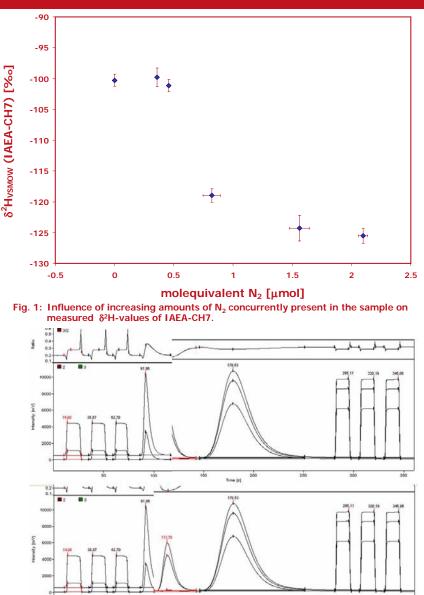
A Potentially Compounding Factor Affecting ²H Isotope Analysis of Explosives by TC/EA-IRMS

H.F. Kemp and W. Meier-Augenstein* Environmental Forensics and Human Health Lab., EERC, Queen's University Belfast, UK

Background

Observations made in our lab when analysing CO_2 standards [5 vol% in argon] for ¹³C-isotopic abundance, suggested an interference between the two gases whereby molecules of the interfering gas [argon] competed with the target gas [CO₂] for ionisation. In the absence of an alternative, we termed this affect 'ionisation quench' or 'IQ'. Here we set out to investigate whether such an IQ-effect would occur (and if so, to what extent) when measuring a compound of known ²H-isotopic composition [IAEA-CH7; δ^2H_{VSMOW} -100.3 ‰] in the presence of nitrogen. We have further identified a maximum 'safe' nitrogen-content threshold above which accuracy of ²H-measurement under "standard" operating conditions becomes doubtful.

Belfast


Queen's University

Any impact on the ability to accurately measure ²Hisotopic abundance of nitrogen-rich compounds would have to be taken into account when analysing a variety of compounds although of interest to us would be highly energetic materials such as ammonium nitrate, RDX and the RDX precursor hexamine.

Methodology

Approximately 0.1 mg of the international reference material (IRM) IAEA-CH7 (polyethylene) samples were weighed into silver caps to which increasing amounts of AgNO₃ (chosen as controllable source of nitrogen) were added [range approx 0.1 mg-0.75 mg]. Prior to analysis, samples were stored in an evacuated dessicator over phosphorus pentoxide for 7 days. Samples were also prepared containing IAEA-CH7 only [approx 0.1 mg] and AgNO₃ only, both treated as described for IAEA-CH7 plus AgNO₃.

Samples were introduced into a Thermo-Finnigan Delta^{plus}XP coupled to a high temperature conversion elemental analyser [TC/EA] by means of a Costech zero-blank autosampler (reactor temp. 1425°C, post-reactor GC-column [5Å molecular sieve] temp. 85°C, carrier gas flow approx. 90 ml/min). Hydrogen and carbon monoxide ref gases were set to 1.0 and 1.45 bar respectively. Measured ²H/¹H isotope ratios are expressed as δ -values [‰] relative to VSMOV..

Results and Discussion

A relationship between measured δ^2 H-values and amount of nitrogen present in combined samples (containing both IAEA-CH7 and AgNO₃) was observed resulting in loss of accuracy for the accepted δ^2 H-values of IAEA-CH7 (Fig. 1) and a 20 – 25% loss in both H₂ peak height and peak area under "standard" operating conditions, i.e. GC temp. of 85°C.

Analysing a nitrogen-rich sample at a GC temp. of 85° C results in a peak overlap of typically 18 s of the H₂ peak tail with the N₂ peak front (Fig. 2).

How little sample material will already impair accuracy of ²H isotope analysis of nitrogen-rich compounds such as explosives and their precursors has been calculated on the basis of our model experiments and these results are presented in Table 1.

The effect of reduced GC temperature on N_2 retention time as a potentially remedial action is summarised in Table 2.

2	able 1:		l-equiv ounds#	ivalents for Nitrogen-Rich s [#]		h	
	[µg] Sample	N ₂ [µmol] AgNO ₃	N ₂ [µmol] NH ₄ NO ₃	N ₂ [µmol] TNT	N ₂ [µmol] Hexamine	N ₂ [µmol] RDX	
	0	0.00	0.00	0.00	0.00	0.00	
	122	0.36	1.53	0.85	1.94	1.65	
	155	0.46	1.94	1.08	2.46	2.09	
	278	0.82	3.48	1.94	4.41	3,76	

a when the same stand	stated by south	and a second second second		and the state of the state	negatively impact
 The figures under 	enaid in yead	w correspond	to sample amo	unts that would	negativery impact
on annumber of 743	losters and	Same considers Test	and and Theorem	ing and distants and	CC @ 0000 and
on accuracy of ² H					

arrier cas @ ~90 ml/min.

	tention		
GC	Peak Start	RT	Peak Width
[°C]	[s]	[s]	[s]
30	119.0	140.25	58.0
50	110.6	128.0	51.0
60	107.5	123.25	47.25
85	100.7	113.7	42.2

Outlook

Based on these results two potential ways of remedial action warrant further investigation. (1) Run ²H isotope analyses of explosives at a GC temp. of 30°C although this still requires a systematic study to demonstrate H₂ peak parameters are not adversely affected so as to compromise accuracy and precision of measured δ^2 H-values even if there is no peak overlap with N₂. (2) Investigate the potential of using a different stationary phase for the GC column such as HaySep Q.