Are polyphenols viable targets for soft fruit breeding? A model study with blackcurrant.

Eapen N. Kanichukattu, Ilka N. Abreu, Sandra Gordon, Rex Brennan & Derek Stewart Plant Products and Food Quality Programme, Scottish Crop Research Institute, Invergowrie, DD2 5DA, Scotland

LC/MS: Analysis was performed on single-stage LTQ Orbitrap mass spectrometer, coupled to LC and diode array.

LC conditions: Eluent: A-water (0.1% formic acid) and B-acetonitrile (50%) + 0.1% formic acid, Injection volume of 8 ml, and flow of 200 ml.min-1 at 30°C. Gradient: 5-50% B to 22 min, 100%B to 32 min, 100%B at 34 min. MS conditions-Resolution: 100.000; MS range: 80 – 2000 m/z; Full scan in positive mode

Processing data-Sieve V 1.2™ RT- 2.2 min; frame m/z- 0.02, threshold - 500.000

Statistical Analysis - Simca P 11™.

Results

As part of a broad study looking at polyphenol inheritance we have analysed the progeny (200 lines) from a well established segregating cross derived from the blackcurrant parental lines S36/1/100 (high juice quality) and S10-2-27/28 (gall mite resistant).

Metabolomic screening was undertaken for all progeny and the

shown in Fig. 1.

profiles of the parental lines are

General and specific polyphenols across the progeny

Total anthocyanin levels (mg/ 100 ml of juice) were used to classify the segregating population into 4 groups (Fig. 2). The same classification was used for OPLS analysis of the LC/MS data; a valid model to discriminate the genotypes is shown in Fig. 3. The loading plots identified the outlier genotypes producing not only higher levels of anthocyanins but mainly conjugated anthocyanin-flavonols (Fig. 4). A similar strategy was used to analyse the general phenolics across the progeny, where OPLS analysis (Fig. 5) generated 3 groups (Fig. 6), according to the total phenolics levels (mg/100 ml juice).

Conclusion

The cross yielded progeny exhibiting a diversity of polyphenolic structure and quantity. The stateof-the-art analytical approaches ('omics) facilitated this screening in a timescale significantly quicker (~x10) than traditional analytical approaches. We are applying correlation analysis to this data along with sensorial scores to determine the impact of polyphenols on organolepsis and the interplay between the polyphenol biosynthetic pathways. The authors acknowledge support from the Scottish Government Rural and Environment Research and Analysis Directorate (RERAD). DS thanks the Blackcurrant Foundation (www.blackcurrantfoundation.co.uk) for support

The increase of general and specific polyphenol level is a

target for enhancement in crops, such as soft fruit, since

they accruing evidence suggests they exhibit beneficial

Blackcurrant (Ribes nigrum) represents a rich source of

putatively beneficial polyphenols, such as anthocyanins,

flavonols and phenolic acids, and is a widely consumed

fruit, mainly in juice form. Here we report some advances

effects against a number of degenerative diseases.