Computer visualisation of root morphogenesis A.G. Bengough¹, M.F. Bransby⁴, J. Hans¹, J. Haseloff³, S. McKenna², T. Roberts², T.Valentine¹

¹Scottish Crop Research Institute, Dundee; ²Division of Applied Computing, University of Dundee; ³Department of Plant Science, University of Cambridge, ⁴Division of Civil Engineering, University of Dundee.

Background

- The dynamics of cell growth and expansion in roots underlies root function and morphogenesis.
- This new project aims to develop tools to visualise these processes in Arabidopsis roots by analysing confocal microscope images.
- Techniques will be adapted from computer vision & statistical modelling, geotechnical engineering, root biophysics, and molecular and cell biology.
- A computational framework will be developed for interfacing with future developments and studies in cell biology.

Project plan

- Improve and automate methods for cell segmentation from stacked confocal images
- Extract spatio-temporal data from stacked confocal images by tracking cell location, shape, and size as a function of time (i.e. in 4-D).
- Visualise cell expansion in 4-D using dual-labelling and fluorescent cell reporters.
- · Develop models to run visual simulations of root growth.

Techniques to be applied

Confocal microscopy

• Will be used to capture time-lapse optical sections through living roots.

P article image velocimetry

• Will be used to measure local velocity fields between successive timelapse images.

Elastic-graph matching

• Will be used to track trajectories of segmented cells as a function of time.

Dual fluorescent labelling of cell walls (red) and microtubules (green) in an Arabidopsis root.

Microtubules may partly regulate the direction of cell expansion, by controlling the orientation of cellulose microfibril deposition in cell walls.

Axial displacement (pixels)

Particle image velocimetry will be used to track the displacement of patches of pixels between successive timelapse images.

The figure shows some preliminary data on the velocity field within the cells of an Arabidopsis root.

An impression of how cells will be tracked is given above.

The central axis of the root is indicated by the green line, cell centroids by red nodes, and the presence of shared cell boundary segments by blue lines.

Acknowledgements

This project is funded by the BBSRC. SCRI receives grant-in-aid from SEERAD.

Scottish Crop Research Institute