COMPARING CARBON FIXATION BETWEEN TWO SPECIES OF THE MARINE DIATOM THALASSIOSIRA

Karen Brown¹, John A. Raven¹, Espen Granum², Richard C. Leegood² 1. Plant Research Unit, University of Dundee at SCRI, Invergowrie, Perthshire DD2 5DA Scotland 2. School of Animal & Plant Sciences, University of Sheffield, Sheffield S10 2TN England

Introduction.

Marine diatoms are considered to be responsible for fixing the same amount of carbon per year as all the terrestrial rainforests, and over a quarter of the total carbon fixed by the oceans. Dissolved CO₂ is a potentially limiting factor for marine primary productivity and a great deal of research has focused on carbon-concentrating mechanisms (CCMs) in phytoplankton. In 2000, Reinfelder and co-workers provided evidence for a functional C₄ photosynthetic pathway, as well as a CCM based on active transport of inorganic carbon (or as a CCM in its own right), in the marine diatom *Thalassiosira weissflogii*^{1,2}. The recently published whole genome sequence of the related *Thalassiosira pseudonana* also highlighted the presence of key enzymes of the C₄ pathway³. However, short-term carbon fixation and photosynthesis studies had not previously been conducted on *T. pseudonana*. In this work, we used an HPLC method to determine the short-term carbon fixation products formed by *T. weissflogii* and *T. pseudonana* and potosynthesis function products formed by *CO*₂ conditions.

Initial products after C₃ carboxylation in the chloroplast

An HPLC method for detecting ¹⁴C labelling products.

Triplicate cultures were grown in artificial seawater with 2.38 mM NaHCO₃, at 15[°]C under a 12:12 hour light:dark cycle (200 µmol.m⁻².sec⁻¹). Cultures were maintained at ambient CO₂ levels (380 ppm) or were bubbled with air containing 100 ppm CO₂ for at least 6 days. Cells were harvested during exponential growth and concentrated in Aquil containing no NaHCO₃. Labelling was initiated by adding Aquil with 2.38 mM NaH¹⁴CO₃ (27.5 µCi), and terminated by adding 2 ml boiling water. Unassimilated NaH¹⁴CO₃ was removed from the samples by acidification. Half of each sample was then treated with Calf Intestinal Alkaline Phosphatase (CIAP) to remove any phosphate groups. Both samples were separated and visualised by HPLC (e.g. Figure 1). Peak identification was based on the co-retention of a series of ¹⁴C orqanic acid and sugar standards.

Figure 1: HPLC trace of *T. pseudonana* 10-second-labelling samples (a) before and (b) after treatment with CIAP. Peak areas correspond to compound concentration.

T. weissflogii cells grown under ambient (380 ppm) CO_2 conditions show large amounts of both phosphoglycerate (3C) and malate (4C) as initial products of photosynthesis. Both become less dominant with increasing time. These results suggest the use of both C_3 and C_4 photosynthetic pathways.

References 1. Reinfelder et al. (2000) Nature 407: 996-999 2. Reinfelder et al. (2004) Plant Physiology 135:2106-2111 3. Armbrust et al. (2004) Science 306: 79-86 4. Kaczmarska et al. (2006) Journal of Phycology 42 Diatom images from www.sciencedaily.com This work was supported by the National Environmental Research Council (NERC)

virtually no short-term labelling of malate - suggesting a purely C₃ pathway Phosphoglycerate Malate 60 · U 50 60 40 xed total fiy 30 5 20 520 0 30 20 30 0 10 20 Labelling time (sec) Labelling time (sec) Glucose phosphates Fructose phosphates 60 60 [↓] 50 .^U 50 940 9 40 -10 30 ज 30 20 g 20 10 20 30 20 30 Labelling time (sec) Labelling time (sec)

Scottish Crop Research Institute

T. pseudonana cells grown under ambient (380 ppm) CO₂ conditions show

DUNDER

-

NATURAL

ENVIRONMENT RESEARCH COUNCIL

T. pseudonana cells acclimated to ambient CO_2 (380 ppm) or low CO_2 (100 ppm) produce the same short-term labelling pattern - strengthening the case for a C₃-only pathway. Malate labelling was also highly variable.

Consistent with previous work^{1,2}, our short-term labelling studies have provided additional evidence for a functional C₄ pathway in *T. weissflogii*. Numerous studies have demonstrated the occurence of a CCM in *T. weissflogii* involving active inorganic carbon transport and carbonic anhydrase. The ability to use these two separate, but potentially complementary, carbon-acquisition pathways may enable *T. weissflogii* to out-compete other phytoplankton in areas of the occan subject to carbon ad zinc- (or cobalt-) limitation.

Despite a presence in the *T. pseudonana* genome of key enzymes in the C_4 photosynthetic pathway³, our results have shown that *T. pseudonana* uses a purely C_3 strategy to fix inorganic carbon, after inorganic carbon accumulation as part of its CCM, even when acclimated to low CO₂. Such a fundamental difference between diatoms of the same genus may not be surprising in light of recent work suggesting a large phylogenetic distance between *T. weissflogii* and *T. pseudonana⁴*.