Capsella bursa-pastoris L. Medik. (shepherd's purse) myxospermous seed mucilage mechanically stabilises clay soil

UNIVERSITY OF

DUNDEF

Wenni Deng^{1,2,3,*}, Dong-Sheng Jeng¹, Peter Toorop⁴, Paul D. Hallett³, Geoffrey R. Squire³, Pietro P.M. Iannetta³

¹Division of Civil Engineering, University of Dundee, Dundee DD1 4HN, Scotland UK ²Centre for Environmental Change and Human Resilience (CECHR), University of Dundee ³The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland UK ⁴Royal Botanic Gardens, Kew, Wakehurst Place, Ardinaly, West Sussex RH17 6TN, UK

Email: wenni.deng@hutton.ac.uk

Introduction

- Capsella bursa-pastoris L. Medik (shepherd's purse) seeds are
- myxospermous. That is, they exude mucilage upon hydration.
- Myxospermy appears to be of great ecological importa
- water limited environments
- The utility of the mucilage to improve soil mechanical properties
- Rheology measures assessed the physical properties of a model

(a)

Figure 1. Light micrographs of shepherd's purse seeds visualized after: (a) ruthenium red staining and illumination with white light, showing the localisation of pectin; (b) calcofluor and illumination with UV light, showing cellulose. Where 'm' denotes the mucilage, and 's' the seed. Note that the mucilage is a bilayer structure comprising pecti had cellulose - the cellulose concentrated at the inner layer. Scale bar = 500µm.

The theory of rheology

- Rheology is the science of material deformation and flow.
- Materials may range from ideal-elastic to ideal-viscous.
- The parameters assessed for this study are defined below.

Parameter	Rheology
τ	Rotational shear stress (Pa), applied force
γ	Shear strain (1)
η	Viscosity (Pa·s),
G*	Complex shear modulus (Pa), a measure of stiffness,
G	Storage modulus (Pa), represent elastic behaviour,
G"	Loss modulus (Pa), represent viscous behaviour,
tan δ	Loss factor (1), where is the phase shift angle,
τ,	Yield stress (Pa), represent a critical stress that causes
	irrecoverable deformation
$\tau_{\rm f}$	Stress at flow point (Pa), where material start to flow

Methods:

Seeds were washed in d.H₂0 (1:10 [w/v]) with shaking, 8h. After centrifugation (5000 rpm, 20 min), the mucilage-containing supernatant was freeze-dried. Mucilage was added to soil (a Camontmorillonite (clay) at 0, 0.5 and 1 % [w/w], at soil water contents ranging from 140 - 200 % [w/w] of clay weight. Shear stress (t) was applied (0.1 - 10000 Pa @ Temp. = 20 °C; frequency = 0.5 Hz; gap = 2 mm).

Figure 2. (a) freeze dried mucilage; (b) Ca-montmorillonit; (c) Rotational rheometer

Figure 3. (a) typical flow curve of an 'oscillatory stress sweep test'. (b) – (f) Plots of rheology parameters : loss factor, shear modulus, viscosity, yield stress and flow point stress versus soil water content (%) (respectively), for clay soils containing no mucilage (black diamond/solid line), 0.5 % (blue cross/dashed line) and 1 % (pink triangle/dotted line) mucilage at 20 °C. All experimental data were fitted using an exponential curve, and errors bars denote the SE of the mean.

Conclusions

• Soil rheology parameters (G^* , η , τ_v , τ_f) decrease as water content increases.

- The rate of this decrease is reduced when is seed mucilage present.
- There is less affect of seed mucilage of soil shear modulus and viscosity .
- The greatest affect of the seed mucilage is seen for yield- and flow-stress (soil stiffness).
- This influence is greatest at high soil water content, even for only 0.5 [w/w] mucilage .
- At low water contents 1 % mucilage has greater influence than 0.5 % mucilage.
- Soil water content and rheology-measure relationships are explained by exponential curve fits.
- Seed mucilage increases soil resistance to mechanical stress, even at low concentrations

• This insight will be exploited using mathematical modelling, to facilitate an assessment of the

ecosystem services provisions that might be made by myxospermous seeds.

Further Reading

lannetta 2010. Capsella. Springer. ISBN 978-3-642-14870-5 Penfield et al. 2001. Plant Cell 13: 2777-2791. Puoci et al. 2008. Amer. J. Agri. Biol. Sci. 3: 299-314, 200 Van Oudtshoorn, Van Rooyen 1999. Dispersal biology of desert plants. Springer. ISBN 978-3-642-08439-3 Acknowledgements: This PhD studentship is funded by the CECHR. PH, GRS and PPMI are supported by the Scottish Government. Special thanks are extended to Paul D Hallett.

The James

Hutton