
Run Peak R.T. (sec) Area Name Spectra

C1 1 251.841 29884 Leucine di-TMS 158:1998 147:424 102:309 133:289 159:284 116:252 100:195 103:165 211:139 115:105

2 252.541 40926 Unknown 138:1223 108:433 182:296 197:221 85:180 80:156 139:148 84:147 83:141 158:97 (..)

3 252.891 64312 Tungsten, pentacarbonyl(..) 93:1872 147:949  98:565  95:449 94:232 84:181 80:165 131:127 148:127 96:113 (..)

C2 1 251.575 39452 Tungsten, pentacarbonyl(..) 158:1435 93:970 147:681 95:381 116:354 102:334 159:235 100:215 84:211 103:205 (..)

2 252.275 30816 Tungsten, pentacarbonyl(..) 93:797 138:735  147:656 95:324 108:322 84:316 85:316 139:235 182:223 83:203 (..)

3 252.875 23102 2·, 4a-Epoxymethylphenanthrene(..) 98:1137 147:451 93:450 169:137 95:119 99:108 113:91 101:84 96:78 111:78 (..)

C3 1 251.225 8590 Unknown 93:621 127:288 94:229 80:227 115:215 83:158 472:152 97:149 130:148  138:80 (..)

2 missing m/z 138 assigned to peak 1;

3 251.775 7719 Tungsten, dicarbonyl-(..) 147:1014  98:374  84:329 85:298 117:216 113:206 100:201 148:195 103:157 101:150 (..)

Figure  1. False positive and false negative peaks in GC-MS peak tables

Although expected in all samples leucine is deconvolved  in only 1 of 3 replicated runs in set  C1.  In two further sets leucine is not deconvolved

in any of the runs  and instead the instrument  software automatically deconvolved extraneous peaks from system noise at the retention time of  

leucine
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Introduction

If metabolomics approaches are to have true utility in Functional Genomics programmes it will be important to tackle 

several important areas:

ï to measure simultaneously as many metabolites as possible to approach ëglobalí coverage within the constraints 

imposed by biological and analytical  variance

ï to develop sufficient replicate chromatograms that can be compared meaningfully in order to have sufficient data 

to utilise supervised data analysis techniques.

ï to develop a standardised data model that can be used to capture data from a range of instrument platforms in 

different laboratories and develop  an international data-base strategy

ï to have an overall experimental statistical design that will allow meaningful comparisons to be made of many 

hundreds of genotypes.

Currently, the majority of reported GC-MS profiling experiments have analysed less than 100 chromatograms and 

made comparison of only a few (4-12) genotypes and in some instances have measured the relative ratios of only 

around 100 abundant metabolites for which standards exist.  Lack of standardised methods for the pre-processing 

of raw GC-MS data is a major factor inhibiting development of an international database strategy for metabolomics.  

Although ëring testingí approaches are common to validate quantitative, targeted analysis of a few compounds in 

complex biological samples, to date there are no examples published of co-operative metabolomics experiments 

which require the high throughput measurement of the relative ratios of many hundreds of metabolites in the same 

extracts in more than one laboratory.  The present work seeks to identify some of the major bottlenecks in order to 

develop a future strategy for metabolomics.

Figure 6.    Expected relationship between metabolite signal intensity  and 

frequency  of missing values in GC-tof-MS data table
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Results & Discussion

(1) Peak finding and spectrum deconvolution in metabolome profiling

Sensitive GC-tof-MS technology with high scan rates allows theoretically the user to resolve in excess of 1000 metabolite 

peaks in a single run. In crude extracts the first  challenge is to reproducibly identify peaks representing sample 

chemistry and deconvolve spectra of often >600 metabolite peaks present at a large dynamic concentration range in 

each chromatogram. Using instrument manufacturers' software combined with manual checking of peak alignment we 

have processed data representing 2304 very similar samples. In general more than 70% of peaks represented 

'unknown' metabolites with no, or very poor, matches in spectral databases. Such peaks are rarely annotated in a 

meaningful way for any subsequent multivariate analysis, which is exacerbated in inter-laboratory data mining 

experiments.  Particularly evident is the problem relating to the generation of false positive peaks (Figure 1) in which 

aberrant peaks (false positives) are identified by instrument software often coincides with the loss of a previously 

validated peak such as leucine in the example shown.  

The manual pre-processing of this large amount of metabolomics data requires skilled individuals and takes longer 

than the chromatography runs themselves, thus soon becoming a major bottleneck.   However, the end result is that 

detailed comparisons can be made of the metabolic profiles of closely related samples to generate new insight into 

genotype related differences (Figure 2). The overall aim of the present study is to try and automate data pre-

processing to remove this bottleneck and to start to develop approaches by which data produced on different 

machines can be compared meaningfully.

(6)  Developing approaches to deal with peak alignment in output from different GC-MS instruments using metabolome 

profiling data

The presence of large numbers of zero values for some metabolites in a data table results in non-normal and disjunctive 

distribution of peaks in replicate data tables which confounds many types of commonly used unsupervised statistical analysis 

techniques such as ANOVA and PCA.  This is a major problem in metabolomics and particularly the presence of false positive 

peaks is something that should be possible to test for in future.  Two possible related approaches are being researched to try and 

improve data quality in GC-MS profiling.  As a longer term solution it should be possible to develop more robust peak finding (and 

peak spectrum deconvolution) algorithms to analyse raw data from any instrument that will require any new ëfoundí peaks to 

conform to a greater range of ëexpected behaviourí between many replicate runs and not just within a single run.  Thus new 

peaks would not be allowed to occupy a user library of expected peaks until being validated.  Secondly, as a shorter term solution 

it should be possible to develop software that will analyse data tables generated automatically by manufacturers software and 

highlight found peaks that may not conform to expected behaviour which can then be left out of any data analysis. 

As a first step in this process we have been using the software package AnalyzerPro (SpectralWorks Ltd)  to assess its capacity to 

accept raw data files from the three GC-MS instruments and generate peak tables that can be compared for peak alignment. Initial 

experience is that AnalyzerPro accepts, processes, deconvolves and generates peak tables in a fully automated fashion of raw 

data, Net-CDF- and .CSV-files from all three systems. Running AnalyzerPro we were able to quickly process automatically raw 

data files representing different potato extracts and deconvolve between 100-600 peaks from each run.  An example of the type of 

output obtained from this package is illustrated in Figure 7.

Manual pre-processing of data requires great expertise in mass spectrometry and uses up a substantial time resources. 

Our initial impressions are that peak alignment between replicate, consecutive runs made on the same instrument is 

excellent but comparison of runs made in different time frames is more problematic due to instrument drift.  At this initial 

stage of the investigation somewhere between 30-35% of deconvolved peaks are aligned in output from all three 

instruments.  Bearing in mind the difference in data acquisition parameters and sensitivity between the three systems 

this approach looks promising for further develop.

In the second approach we have started to assess the potential of the Matrix Analyzer (module in AnalyzerPro) to examine data 

table output from GC-MS instruments.  Data from replicated runs of potato tuber extracts  from each system were deconvolved

and compared against a reference component list.  The data matrix was prepared in Excel (Figure 8) for data analysis. Statistical 

analyses (PCA) of normalized peak areas (against internal standard) and generation of loading plots of matrices were performed in 

Matlab (The MathWorks, Inc). Component IDís were directly linked to components in Matrix Analyser. Peaks were annotated in 

loading plots if component matches retention index and mass spectrum of external standards analyzed under same conditions.

The PCA plots (Figure 9) indicate that potato genotypes were well discriminated using the data matrix generated by AnalyzerPro.  

Examination of the loadings plots identifies a small number of discriminatory metabolites which separate the species Solanum

phureja from the  two Solanum tuberosum varieties Desiree and Cara in PC1  (red).   In PC2 Desiree (green) and Cara (blue) are 

well discriminated by individual metabolites.  

In summary, our initial experience is that AnalyzerPro is a quick and useful tool to pre-process data tables for meaningful 

analysis and the process does work using data from all three types of GC-MS instrument. As expected the major problem 

associated with the whole process is the quality (reproducibility) of the initial deconvolution.

(4) A combination of false positives, fluctuations  in individual 

metabolite concentrations between samples and instrument sensitivity 

complicates comparison of replicate chromatograms

Large-scale metabolomic experiments require analysis of many hundreds of 

samples over long periods of time. To compensate for instrument variance it 

is extremely important to randomise injection order of samples in order to 

generate data that is not skewed by instrument drift. Metabolites are present 

in plant tissue extracts in a dynamic concentration range, which can differ 

over several orders of magnitude between individual metabolites. Thus 

many low-concentration metabolites will regularly fall below the threshold for 

accurate detection in many runs, depending on system sensitivity at the 

time and absolute concentration in a replicate sample. A zero value for a 

metabolite occurs because a peak is not found by the instrument (Figure 5), 

either because the concentration is too low (missing value) or because a 

false positive peak has been generated in the same retention time window 

and thus the expected peak is not found (false negative). In the case of 

missing values due to concentration differences between metabolites there 

is a linear relationship between the number of zero values for a metabolite 

in a series of data tables and its expected signal intensity (Figure 6). Unlike 

the normal expected behaviour of peaks, a possible false positive peak 

among the lower concentration metabolites can often be identified because 

they will be shifted to the right of the expected curve due to the fact when 

actually measured their intensity will be higher than predicted by their 

frequency of zero values in the data table. 

(3)  Machine drift makes it difficult to compare peak tables 

generated over a long time period in metabolomics experiments

In metabolomics GC-MS profiling experiments metabolites are not 

quantified against standards but instead normalised within a run to 

some chromatogram parameter such as total peak area or internal 

standards and data presented as relative ratios. Run quality is 

assessed by examining the chromatographic behaviour of a quality

control mixture of 20-30 standard chemicals to monitor peak retention 

time shifts and intensity change thus allowing runs to be rejected that 

fall outside pre-determined thresholds.   However, column aging and 

periodic maintenance cause both gradual drift and more abrupt 

changes in instrument responses.  This results in time batch related 

clustering of samples when analysed by multivariate data analysis 

techniques such as Principal Components Analysis (PCA). For 

example Figure 4 illustrates time batch clustering of GC-MS QC 

standards over a period of 4-5 months.  Such behaviour is extremely 

difficult to calibrate between runs and confounds facile data analysis, 

particularly by unsupervised methods.
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(5) Comparison of Peak Tables generated following analysis of  same extract on three different GC-MS machines

A major step in the integration of metabolomics data in the future is the ability to analyse similar extracts on different 

instruments based in different laboratories and to generate data tables in which all the peaks are aligned and may thus be 

utilised in meaningful data mining experiments.  In a preliminary study to assess the scope of this challenge we compared 

chromatograms generated on three instruments using a common extract. Polar extracts of potato tubers were prepared 

using water, methanol and chloroform, dried down and derivatized by substituting labile hydrogen atoms with a 

trimethylsilyl-group. Samples were analysed on three different GC-MS instruments using columns with similar polarity (e.g. 

DB5), but different injector/detector technologies, run parameters and scan rates. 

System:     Agilent MSD Quadrupole GC-MS, Finnigan Tempus GC-tof-MS, LECO Pegasus III GC-tof-MS 

Solanum samples Desiree, Phureja, Cara

Manual comparison of GC-MS metabolite peak lists from the instruments indicates perfect correspondence of elution 

order of known metabolites. The majority of major known metabolites (approx. 50 peaks, 20 % of total number found 

using all instruments) are found in all three peak lists. TOF-systems detect an additional 20-25% known metabolite peaks 

reproducibly found in replicated runs. Many of the higher intensity unknown peaks (approx. 50, 20 %) recognisable by 

spectra and RT correspond between instruments. A large percentage (approx. 40 %) of lower intensity unknown peaks do 

not correspond between peak tables generated on different machines. It is not certain if these represent artefactual peaks 

in some instruments, but currently they are identified reproducibly in at least one system. 

For a multi-site metabolomics project to function it is essential that all variables (metabolite peaks) in data 

analysis can be aligned and as the vast majority of peaks are low abundance and unknown then a rational 

procedure has to be put in place to correct or remove such peaks from data tables.

Figure 2.   PCA-DFA of potato cultivars by 

analysis of GC-MS data

Figure 7.  Example of data output following 

analysis of raw data files from a LECO GC-tof-MS 

by Analyzer Pro (SpectralWorks)

Summary report of found peaks

Example spectrum

Part of data matrix comparing peaks in a single run to a single standard list

(2)   False positive peak accumulate in large scale metabolomics experiments

As the vast majority of peaks identified in metabolome profiling are unknown there are no standard spectra available   for 

comparison. Unknown peaks are generally also of relatively low intensity and so deconvolution of spectra from background 

noise, co-eluting and flanking peaks is also difficult.  Under these circumstances peak annotation becomes a major problem as 

high confidence matches with previously identified peaks in a user library are not always  achieved.  The end result is the 

gradual accumulation of false positive peaks as more and more chromatographic runs of similar extracts are processed. 

The Pegasus II  GC-tof-MS instrument manufactured by LECO Corp. is one of very few instruments with bespoke software 

which allows automated peak finding and spectrum deconvolution. In the example shown in Figure 3 the peak finding

parameters in the LECO system were set  to identify 1000 unknown peaks in a GC-MS chromatogram of a crude plant extract 

using automated peak table generation. Allowed to operate automatically without user intervention after 72 runs  the software 

had already defined presence of over 3000 ëpeaksí in a matrix that probably contained less than 1000 independent metabolites. 
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Figure 9.   PCA of representative GC-MS data discriminating 3 potato genotypes
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Figure 8.   AnalyzerPro Data Matrix imported into Excel: 

alignment of  GC-MS data in several runs

Metabolite

ID
NIST 

match

Potato Samples
Des1    Des2  Des3  Des4  Phur1   Phur2   Phur3   Phur4 Cara1    Cara2   Cara3 Cara4

Metabolites aligned in samples

M
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ta
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lit
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n

 D
a
ta

 M
a
tr

ix

001 Piperidine, 1-

(trimethylsilyl)- 7101 - 10140 10851 15603 12011 11780 10843 11509 13529 - 11269

002 Silanamine, N,N 30865 32197 29855 36916 18186 24843 21385 23150 22061 24064 28517 19348

003 3,5-Dimethyl-2-

octanone 9478 7917 9666 8924 10350 - 8830 8138 7996 10101 9863 9761

004 l-Valine, 

trimethylsilyl 

t
8738 8458 - - - - - 3965 7300 6430 7325 6161

005 1-

Pentamethyldisil

yloxyhexadecan 31335 34228 37664 34877 55616 52663 50953 49989 43335 45457 39660 45487

006 1,1,1,3,5,5,7,7,7-

Nonamethyl-3-

(trimethylsiloxy

)tetrasiloxane - - - - 8225 - - - - 9296 10093 10578

007 Bicyclo[3.2.0]he

ptan-3-one, 2-

hydroxy-1,4,4-

trimethyl-, O-

acetyloxime - - - - - - - - - 3742 - -

008 L-Valine, N-

(trimethylsilyl)-, 

trimethylsilyl 

t
243176 216157 364185 385404 409173 345825 287629 307313 145845 143665 148794 124314

009 Urea, N,N

- - 9017 - 8092 - - - 14656 15948 - -

010 3,6,9-Trioxa-

2,10-

disilaundecane, 

2,2,10,10-

tetramethyl- 443750 439178 446655 461176 485163 467927 464200 461713 475295 498846 459873 482544

011 1-Aminoindan

9753 12019 - - - 13196 - 15625 18308 13080 30933 22339

012 N,N,O-Tris-

(trimethylsilyl)-

4-

aminomethylcyc

lohexane - - - 13615 20018 20150 12855 19836 24044 21445 32177 30145

013 N,O-Bis-

(trimethylsilyl)is

oleucine 62757 60888 87508 99673 64722 60766 51836 58402 56637 77109 69818 65744

014 Silanol, 

trimethyl-, 

phosphate (3:1) 600825 588968 614733 762964 1110868 1095491 1002578 1067260 1032886 1101315 1120396 1088911

015 Decane, 2,4-

dimethyl- 9492 9201 9742 8678 11958 8537 - 9371 8105 12504 11008 10596

016 L-Isoleucine, N-

(trimethylsilyl)-, 

trimethylsilyl 62757 60888 87508 99673 143472 60766 51836 121502 77710 79835 83812 71081

017 L-Proline, 1-

(trimethylsilyl)-, 

trimethylsilyl 

ester 40062 35188 68493 69085 48938 37011 35231 34612 295744 265626 275727 225318

018 Glycine, N,N-

bis(trimethylsily

l)-, 

trimethylsilyl 

ester 41712 38898 43125 48908 40352 36960 33821 34624 51669 45953 43812 41324
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Figure 5.  NO. of times metabolites

found in LECO GC-tof-MS data set

containing 2340 samples and 370

expected peaks
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