Metabolite Peak Identification and Data Structure in a Multi-Site, Large Scale Metabolomics Experiment
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Introduction

If metabolomics approaches are to have true utility in Functional Genomics programmes it will be important to tackle
several important areas:

T to measure simultaneously as many metabolites as possible to approach églobalicoverage within the constraints
imposed by biological and analytical variance

T to develop sufficient replicate chromatograms that can be compared meaningfully in order to have sufficient data
to utilise supervised data analysis techniques.

i to develop a standardised data model that can be used to capture data from a range of instrument platforms in
different laboratories and develop an international data-base strategy

T to have an overall experimental statistical design that will allow meaningful comparisons to be made of many
hundreds of genotypes.

Currently, the majority of reported GC-MS profiling experiments have analysed less than 100 chromatograms and
made comparison of only a few (4-12) genotypes and in some instances have measured the relative ratios of only
around 100 abundant metabolites for which standards exist. Lack of standardised methods for the pre-processing
of raw GC-MS data is a major factor inhibiting development of an international database strategy for metabolomics.
Although éringtestingi approaches are common to validate quantitative, targeted analysis of a few compounds in
complex biological samples, to date there are no examples published of co-operative metabolomics experiments.
which require the high throughput measurement of the relative ratios of many hundreds of metabolites in the same
extracts in more than one laboratory. The present work seeks to identify some of the major bottlenecks in order to
develop a future strategy for metabolomics.

(3) Machine drift makes it difficult to compare peak tables
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In metabolomics GC-MS profiling experiments metabolites are not
quantified against standards but instead normalised within a run to
some chromatogram parameter such as total peak area or internal
standards and data presented as relative ratios. Run quality is
assessed by examining the chromatographic behaviour of a quality
control mixture of 20-30 standard chemicals to monitor peak retention
time shifts and intensity change thus allowing runs to be rejected that
fall outside pre-determined thresholds. However, column aging and
periodic maintenance cause both gradual drift and more abrupt
changes in instrument responses. This results in time batch related
clustering of samples when analysed by multivariate data analysis
techniques such as Principal Components Analysis (PCA). For
example Figure 4 illustrates time batch clustering of GC-MS QC
standards over a period of 4-5 months. Such behaviour is extremely
difficult to calibrate between runs and confounds facile data analysis,
particularly by unsupervised methods.
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Results & Discussion

(1)_Peak finding and spectrum d olution in profiling

Sensitive GC-tof-MS technology with high scan rates allows theoretically the user to resolve in excess of 1000 metabolite
peaks in a single run. In crude extracts the first challenge is to reproducibly identify peaks representing sample
chemistry and deconvolve spectra of often >600 metabolite peaks present at a large dynamic concentration range in
each chromatogram. Using instrument manufacturers' software combined with manual checking of peak alignment we
have processed data representing 2304 very similar samples. In general more than 70% of peaks represented
‘unknown' metabolites with no, or very poor, matches in spectral databases. Such peaks are rarely annotated in a
meaningful way for any subsequent multivariate analysis, which is exacerbated in inter-laboratory data mining
experiments. Particularly evident is the problem relating to the generation of false positive peaks (Figure 1) in which
aberrant peaks (false positives) are identified by instrument software often coincides with the loss of a previously
validated peak such as leucine in the example shown.

The manual pre-processing of this large amount of metabolomics data requires skilled individuals and takes longer
than the chromatography runs themselves, thus soon becoming a major bottleneck. However, the end result is that
detailed comparisons can be made of the metabolic profiles of closely related samples to generate new insight into
genotype related differences (Figure 2). The overall aim of the present study is to try and automate data pre-
processing to remove this bottleneck and to start to develop approaches by which data produced on different
machines can be compared meaningfully.

Figure 1. False positive and false negative peaks in GC-MS peak tables

Although expected in all samples leucine is deconvolved in only 1 of 3 replicated runs in set C1. In two further sets leucine is not

found in LECO GC-tof-MS data set
containing 2340 samples and 370
expected peaks

I mic experiments require analysis of many hundreds of
samp\es over long periods of time. To compensate for instrument variance it
is extremely important to randomise injection order of samples in order to

generate data that is not skewed by instrument drift. Metabolites are present
in plant tissue extracts in a dynamic concentration range, which can differ
over several orders of magnitude between individual metabolites. Thus
many low-concentration metabolites will regularly fall below the threshold for
accurate detection in many runs, depending on system sensitivity at the
time and absolute concentration in a replicate sample. A zero value for a
metabolite occurs because a peak is not found by the instrument (Figure 5),
either because the concentration is too low (missing value) or because a || £
false positive peak has been generated in the same retention time window
and thus the expected peak is not found (false negative). In the case of
missing values due to concentration differences between metabolites there
is a linear relationship between the number of zero values for a metabolite
in a series of data tables and its expected signal intensity (Figure 6). Unlike
the normal expected behaviour of peaks, a possible false positive peak
among the lower concentration metabolites can often be identified because
they will be shifted to the right of the expected curve due to the fact when
actually measured their intensity will be higher than predicted by their
frequency of zero values in the data table.
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(6) Developing approaches to deal with peak
rofiling data

in output from different GC-MS instruments using

The presence of large numbers of zero values for some metabolites in a data table results in non-normal and disjunctive
distribution of peaks in replicate data tables which confounds many types of commonly used unsupervised statistical analysis
techniques such as ANOVA and PCA. This is a major problem in metabolomics and particularly the presence of false positive
peaks is something that should be possible to test for in future. Two possible related approaches are being researched to try and
improve data quality in GC-MS profiling. As a longer term solution it should be possible to develop more robust peak finding (and
peak spectrum deconvolution) algorithms to analyse raw data from any instrument that will require any new ébundi peaks to
conform to a greater range of éapected behaviouri between many replicate runs and not just within a single run. Thus new
peaks would not be allowed to occupy a user library of expected peaks until being validated. Secondly, as a shorter term solution
it should be possible to develop software that will analyse data tables generated automatically by manufacturers software and
highlight found peaks that may not conform to expected behaviour which can then be left out of any data analysis.

As a first step in this process we have been using the software package AnalyzerPro (SpectralWorks Ltd) to assess its capacity to
accept raw data files from the three GC-MS instruments and generate peak tables that can be compared for peak alignment. Initial
experience is that AnalyzerPro accepts, processes, deconvolves and generates peak tables in a fully automated fashion of raw
data, Net-CDF- and .CSV-files from all three systems. Running AnalyzerPro we were able to quickly process automatically raw
data files representing different potato extracts and deconvolve between 100-600 peaks from each run. An example of the type of
output obtained from this package is illustrated in Figure 7.

Manual pre-processing of data requires great expertise in mass spectrometry and uses up a substantial time resources.
Our initial impressions are that peak ali it runs made on the same instrument is
excellent but companson of runs made in different time frames is more problematlc due to instrument drift. At this initial
stage of the i i b 30-35% of d Ived peaks are allgned in output from all three
instruments. Bearing in mind the difference in data i p s and y the three sy

this approach looks promising for further develop.
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In the second approach we have started to assess the potential of the Matrix Analyzer (module in AnalyzerPro) to examine data
table output from GC-MS instruments. Data from replicated runs of potato tuber extracts from each system were deconvolved
and compared against a reference component list. The data matrix was prepared in Excel (Figure 8) for data analysis. Statistical
analyses (PCA) of normalized peak areas (against internal standard) and generation of loading plots of matrices were performed in
Matlab (The MathWorks, Inc). Component IDis were directly linked to components in Matrix Analyser. Peaks were annotated in
loading plots if component matches retention index and mass spectrum of external standards analyzed under same conditions.
The PCA plots (Figure 9) indicate that potato genotypes were well discriminated using the data matrix generated by AnalyzerPro.
Examination of the loadings plots identifies a small number of discriminatory metabolites which separate the species Solanum
phureja from the two Solanum tuberosum varieties Desiree and Cara in PC1 (red). In PC2 Desiree (green) and Cara (blue) are
well discriminated by individual metabolites.

In summary, our initial experience is that AnalyzerPro is a quick and useful tool to pre-process data tables for meaningful
analysis and the process does work using data from all three types of GC-MS instrument. As expected the major problem
associated with the whole process is the quality (reproducibility) of the initial deconvolution.

(5) Comparison of Peak Tables generated analysis of same extract on three different GC-MS machines

inany of the runs and instead the instrument software automatically deconvolved extraneous peaks from system noise at the retention time of
leucine

Run Peak RT.(sec) Area Name

Spectra

c1 1 251,841 29884 Leucine di-TMS 158:1998 147:424 102:309 133:289 159:284 116:252 100:195 103:165 211:139 115:105
2 252541 40926 Unknown 138:1223 108:433 182:296 197:221 85:180 80:156 139:148 84:147 83:141 158:97 (..)
3 252891 64312 Tungsten, pentacarbonyl(..) 93:1872 147:949 98:565 95:449 94:232 84:181 80:165 131:127 148:127 96:113 (..)

c2 1 251,575 39452 Tungsten, pentacarbonyl(..) 158:1435 93.970 147:681 95:381 116:354 102:334 159:235 100:215 84:211 103:205 (..)

2 252275 30816 Tungsten, pentacarbony(..)
3 252875 23102 2, 4a-Epoxymethyiphenanthrene..)

93797 138:735 147:656 95:324 108:322 84:316 85:316 139:235 182:223 83:203 ()
98:1137 147:451 93:450 169:137 95:119 99:108 113:91 101:84 96:78 111:78 ()

c3 1 251225 8590 Unknown

2 missing

3 251.775 7719 Tungsten, dicarbonyi(.)

93:621 127:288 94:229 80:227 115:215 831158 472:152 97:149 130:148 138:80 (.)
miz 138 assigned to peak 1;
147:1014 98:374 84:329 85:298 117:216 113:206 100:201 148:195 103:157 101:150 (..)

(2) False positive peak in large scale experiments

As the vast majority of peaks identified in metabolome profiling are unknown there are no standard spectra available for
comparison. Unknown peaks are generally also of relatively low intensity and so deconvolution of spectra from background
noise, co-eluting and flanking peaks is also difficult. Under these circumstances peak annotation becomes a major problem as
high confidence matches with previously identified peaks in a user library are not always achieved. The end result is the
gradual accumulation of false positive peaks as more and more chromatographic runs of similar extracts are processed.

The Pegasus Il GC-tof-MS instrument manufactured by LECO Corp. is one of very few instruments with bespoke software
which allows automated peak finding and spectrum deconvolution. In the example shown in Figure 3 the peak finding
parameters in the LECO system were set to identify 1000 unknown peaks in a GC-MS chromatogram of a crude plant extract
using automated peak table generation. Allowed to operate automatically without user intervention after 72 runs the soﬂware
had already defined presence of over 3000 &eaksi in a matrix that probably i less than 1000 ir

A major step in the integration of metabolomics data in the future is the ability to analyse similar extracts on different
instruments based in different laboratories and to generate data tables in which all the peaks are aligned and may thus be

Figure 8. AnalyzerPro Data Matrix imported into Excel:

Figure 7. alignment of GC-MS data in several runs

Example of data output following

analysis of raw data files from a LECO GC-tof-MS

Metabolite NIST Potato Samples

match Desi Des2 Des3 Dest Phurl Phu2 Phu3 Phuré Caral Cara2 Cara3 Carad

utilised in data mining In a preliminary study to assess the scope of this challenge we comp.
chromatograms generated on three instruments using a common extract. Polar extracts of potato tubers were prepared
using water, methanol and chloroform, dried down and derivatized by substituting labile hydrogen atoms with a
trimethylsilyl-group. Samples were analysed on three different GC-MS instruments using columns with similar polarity (e.g.
DBS5), but different injector/detector technologies, run parameters and scan rates.
System: Agilent MSD Quadrupole GC-MS, Finnigan Tempus GC-tof-MS, LECO Pegasus lll GC-tof-MS
Solanum samples  Desiree, Phureja, Cara

Manual comparison of GC-MS metabolite peak lists from the instruments indicates perfect correspondence of elution
order of known metabolites. The majority of major known metabolites (approx. 50 peaks, 20 % of total number found
using all instruments) are found in all three peak lists. TOF-systems detect an additional 20-25% known metabolite peaks
reproducibly found in replicated runs. Many of the higher intensity unknown peaks (approx. 50, 20 %) recognisable by
spectra and RT correspond between instruments. A large percentage (approx. 40 %) of lower intensity unknown peaks do
not correspond between peak tables generated on different machines. It is not certain if these represent artefactual peaks
in some instruments, but currently they are identified reproducibly in at least one system.

periments.

For a multi-site metabolomics project to function it is essential that all variables (metabolite peaks) in data
analysis can be aligned and as the vast majority of peaks are low abundance and unknown then a rational
procedure has to be put in place to correct or remove such peaks from data tables.

by Analyzer Pro (SpectralWorks)
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