The role of ethene and cell-wall modifying enzyme activities in the determination of raspberry (Rubus idaeus L.) fruit firmness

P. P. M. Jannetta¹, J. Van den Berg², R. E. Wheatlev³, G. P. McMillan⁴, R. J. McNicol⁵ and H. V. Davies³ Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK

¹Mylnefield Research Services (MRS) Ltd. Email: pianne@scri.sari.ac.uk., ²Formerly, MRS Ltd: currently, Nunhems Zaden BV, PO Box 4005, 6080AA Haelen, Holland, ³Department of Cellular and Environmental Physiology. ⁴Formerly, Deprtment of Mycology and Bacteriology, ⁵Department of Soft Fruit Genetics

Introduction

Though the United Kingdom produces 7.4% of World Raspberry production it is a net importer of raspberries. This is due mainly to limited shelf-life. caused by tissue softening. The work presented here addresses the relationship between respiration, ethene evolution and softening to allow a targeted approach for molecular science and the improvement of fruit quality.

Plant material

Raspberry genotypes were chosen from two different genetic backgrounds of SCRI and HRIEM. From SCRI these were Glen Prosen (firm) and Glen Clova (soft) and from HRIEM, EM 4997 (firm) and EM 5007 (soft). Ten different classes of ripening raspberry fruits (based on colour and circa fresh weight (g)) were used for analysis from field-grown crops of each genotype.

Ripeness Fruit description

- Flower buds just opened
- Petals fallen, fruits very small and green; 0.25-1g
- Small and green: 0.75-1.5g
- Small and pale green; 1-2g
- Expanded and white in appearance; 2-3g
- Entirely pink: 3-4a
- Light red; 3-4g
- Entirely red: 4-5a
- Very dark red: 4-5g
- Ripeness class 7 harvested and stored at 20°C for 24h

Ripening rates

Time to ripen (50 for each genotype) from ripening class 4 to 7 did not vary between genotypes. From flower opening to the green fruit stage there were significant differences in ripening time with firmer genotypes taking longer to complete this stage.

Genotype source	SCRI		HRIEM	
Raspberry genotype	Glen Prosen	Glen Clova	4007	5007
Fruit firmness	Firm	Soft	Firm	Soft
Character at harvest				
Ripeness class	Ethene produc	tion (mg hr ⁻¹ g fw)		
5	7.93 ± 6.87 ^c	16.94 ± 6.03 ^b	12.84 ± 0.48 ^b	30.40 ± 7.63
7	23.35 ± 2.53 ^c	34.34 ± 5.03^{b}	20.01 ± 7.04 ^c	55.28 ± 5.82
Ripening class	Time (days)			
0 to 2	36.25 ± 2.81 ^c	30.34 ± 2.40 ^b	35.27 ± 2.10^{b}	32.45 ± 1.65
2 to 4	24.49 ± 1.85 ^c	24.48 ± 1.42 ^b	22.80 ± 1.42 ^c	18.53 ± 1.68
4 to 5 ^{NS}	3.01 ± 0.78	2.04 ± 0.44	2.64 ± 0.43	2.18 ± 0.33
5 to 7 ^{NS}	1.32 ± 0.77	1.22 ± 0.43	0.69 ± 0.51	1.01 ± 0.41

a,b denotes anova categories for significant differences where p < 0.05

Fruit growth character

These bar charts show the average fresh weight (g) for whole fruits and receptacle only repectively. Average values for all four genotypes (where n = 50 for each genotype) at each ripening class illustrate the growth pattern of maturing red is: growth from ripening classes 1 to 3, a plateau in development from 3 to 5 and continued growth from 5 to 8. This pattern was also true of dry weight data which is not presented here. There was no significant difference in whole fruit fresh or dry weights between either SCRI variety and EM 5007; EM 4997 was significantly larger than the other three genotypes.

in milli Newtons (mN) to penetrate the ng red raspberry druplets (n=20). For all rmness declined in a linear fashion as fruit ruit found to be characteristically firm at harvest is also firmer throughout fruit development.

Between genotypes there was no significant variation in respiration which declined as ripening proceeded. Illustrated are Glen Clova berries (where n=3; and each replicate is the average of 3

Cell wall modifying enzyme activity

PG activity (μ moles of glucose released per gram cell-wall dry weight per hour at 37oC; where n = 3, and each replicate is the average of 10 berries) throughout ripening did not differ with genetic and EM genotypes (—) show that the activity pattern during ripening corresponds to the growth curve of developing fruits. That is, increased activity during ripening class 2 (green) when fruit expands and becomes more pale to reach ribening class 4 (white) when activity is suppressed during the growth plateau (ripening classes 4(white) to 5(pink)) and a rapid increase in activity to maximum levels from class 5 (red) and after harvest.

Cx activity showed no relationship with ripe fruit firmness. Viscometery data (relative viscosity per gram cell-wall dry weight per hour) is also shown (----) for developing Glen Clova fruits.

activity Poly galatu Cellulase

For each SCRI variety ß-gal activity (u moles of p-nitrophenol released per gram cellwall dry weight per hour at 20oC) was unaltered throughout ripening and was significantly higher (p < 0.05) in Glen Clova (softer) fruits. For EM's 5007 and 4997 activity correlated with fruit firmness only at ripening classes 2 and 7 (p < 0.05). Therefore, a correlation exists between ß-gal activity and fruit firmness (at harvest) though ß-gal activity is high early in fruit maturation.

Ethene application

Long term exposure (48 hr) of green fruit to 21 vpm ethene led to enhanced carbon dioxide production, decreased druplet firmness and induced red pigmentation of druplets (data are averages of three berries). This suggests a causative role for ethene in raspberry fruit ripening.

	Cultivar	Ripeness class	Ethene exposure	% CO ₂ (after 48 hours)	
	Glen Prosen	2	Yes No	2.3 1.9	
	Glen Clova	2	Yes No	1.8 1.1	
	Anova				
	Cultivar		***	•	1
	Ethene exposu	re	•••	•••	
NS		Not significantly different			
			Significantly diff	erent at p < 0.05	
	•••		Significantly diff	erent at p < 0.01	

fruit. These differences corresponds with receptacle size: compare Glen Prosen which has a receptacle around

At ripening class 7 to show that druplet firmness relates		
to other fruit parameters, namely; ethene evolution; time		
to ripen; and receptacle weight. The ripe fruit of EM		
5007 which produces the highest ethene levels, ripen in	The fe	orce taken
the shortest time and is amoung the softest fruit. This is	skin of	developin
in contrast to Glen Prosen which takes longest to ripen.	four ge	enotypes fi
has the lowest ethene levels and produces firmer ripe	mature	ed. Álso, fr
has the towest effetie levels and produces infiner tipe		

Genotype	Relative fruit- firmness	Druplet firmness (mN)	Ethene evolution (mg hr ⁻¹ g fw ⁻¹)	Time to ripen (days)	Receptacle fresh weight (g)
EM 5007	Soft	133 ^a	55.28 ^a	54.17 ^c	0.58 ^a
Glen Clova	Soft	121ª	34.34 ^b	58.08 ^{b,c}	0.47 ^b
EM4997	Firm	191 ^b	20.01°	61.40 ^{a,b}	0.51 ^b
Glen Prosen	Firm	210.3 ^b	23.35 ^c	65.00 ^a	0.34 ^c
a,b,c denotes	anova categorie	s for significant di	ifferences where p <	0.05	

Ethene evolution

circa. 0.5 times as large as EM 5007.

At 21 vpm ethene (as for Table 4 data) the activities of all four enzymes tested increased significantly (Enzyme units are as defined for Figures 5 to 8; here n = 3, and each replicate is the average of 5 berries). With increasing ethene levels PME and ß-gal increased rapidly and was maximal by 63 and 42 vpm ethene respectively. PG and Cx activities appeared less reponsive and increased in a linear fashion with increasing ethene concentration.

