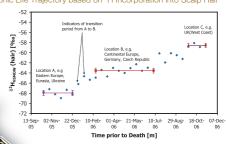
Stable isotopes in the human body: we are what and where we eat and drink ± a few ‰.

W. Meier-Augenstein & H.F. Kemp SCRI, Invergowrie, Dundee DD2 5DA.

Tooth enamel

Incorporation of ¹⁶O and ⁸⁷Sr/⁸⁶Sr into tooth enamel of late erupting molars (2nd and 3rd molar) reflects source water (as water or as e.g. fruit water content) consumed during adolescence and can provide information where a person has lived during the period of 8 to 16 years of age. Similarly, ¹³C incorporation into the carbonate fraction of tooth enamel provides a time averaged record of the dietary ¹³C isotopic composition during adolescence.


Stable isotope record of ²H, ¹³C and ¹⁵N contained in collagen extracted from tooth dentin is hypothesized to provide additional insights into life style (dietary habits), provenance and health status of a person. Research in this area and how dentin isotope record correlates with data from other tissue is the subject of a joint PhD project with the McMaster University, (Hamilton, Ontario, Canada).

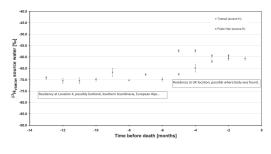
Scalp hair

Stable isotope incorporation of ²H into scalp hair reflects source water (as water or as water contained in fruit and vegetables) and can be used to provide a chronological record of recent geographic movement. Similarly, stable isotope incorporation of ¹²C into scalp hair reflects diet while ¹⁵N reflects diet as well as physiological / metabolic conditions (prolonged infectious disease; crash diet) and can thus provide information on recent life style / life circumstance in fortnightly time increments for up to 15 months into a person's past (depending in hair length).

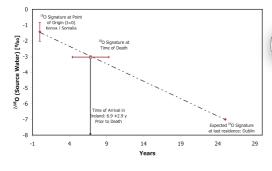
Research into quantifying ²H incorporation from water consumed as direct water and indirect water (water used for food preparation) into hair keratin forms part of a joint PhD project with the University of Dundee.

Geographic Life Trajectory based on ²H Incorporation into Scalp Hair

Femoral bone


Incorporation of ¹⁸O and ⁸⁷Sr/⁸⁸Sr into mid-shaft femoral bone bio-apatite reflects source water consumed (as water or comprised in one's diet) and can provide information where a person has lived during the last 20 to 25 years. Similarly, ¹⁹C incorporation into the carbonate fraction of femoral bone bio-apatite provides a time averaged record of the dietary ¹⁹C isotopic composition consumed during the last 20 to 25 years in a person's life. It is possible to obtain chronological information reflecting time integrals of approx. 6 to 8 years from sequential analysis of samples taken a cross section of the bone.

Research into intra-individual variability of ¹⁶O and ¹³C signals in femoral bone is part of a joint PhD project with the University of Dundee.


Toenail keratin

Stable isotope incorporation of ²H into toenail keratin reflects source water and can be used to provide a chronological record of recent geographic movement. Similarly, stable isotope incorporation of ¹³C into scalp hair reflects diet while ¹⁵N reflects diet as well as physiological / metabolic conditions (prolonged infectious disease; crash diet) and can thus provide information on recent life style / life circumstance in 1 monthly time increments for up to 24 months into a person's past (depending in overall nail length from nail bed to the tip).

Geographic Life Trajectory based on ²H Incorporation into Toenail Keratin

Geographic Life Trajectory based on ¹⁸O Incorporation into Femoral Bone

