Water, Water Everywhere...

and congeners of premium brand spirits determine

provenance and, hence authenticity

How we can use water as natural tracer by exploiting subtle differences in its isotopic composition

W. Meier-Augenstein¹, H.F. Kemp¹, R. Bol² and S. Granger²,

¹ SCRI, Stable Isotope Laboratory, Invergowrie, Dundee, DD2 5DA.

² Biogeochemistry of Soils and Water Group, North Wyke Research, Okehampton, EX20 2SB.

Example 1:

Increase our understanding of the influence of land use and soil composition on water balance.

Conclusions

- 1. Rainwater is believed to move rapidly from clay soils, yet the data presented here suggest that this is not the case.
- 2. Some vet to be understood interaction between clav soil and water results in a more positive isotope shift for drain-flow water as compared to surface runoff.
- 3. Slurry application mitigates for this effect in surface run-off.
- 4. No significant variation in δ ²H-values of drainage water occurred 0.8 over time.

1.0



Table 1: Mean δ²H values of surface run-off and drainage water from heavy clay soil measured during a rainfall event.

Drain-flow

Surface

-42.5

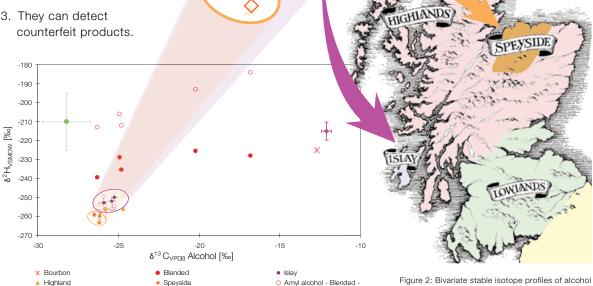
Rainfall

	(0	()	()	-68.3	
	Plot 5 (Slurry applied)	-36.6 (n=16)	-55.1 (n=1)	-00.3	
					-30
Plot 12 — Flow Drain-flow $-\delta^2H$					32
	1				
					34 = -36
	The state of the s				
	V	peropose,			38

Example 2:

Authenticate premium Scottish produce / brands to protect producers, consumers and Scottish jobs.

Conclusions


- 1. Bivariate isotope plots of key components are a powerful tool for QC/QA of premium Scottish produce.
- 2. They can be used for authentication of Scottish brands.
- 3. They can detect

O Amvl alcohol - Islav -

European Wines mean

△ Amvl alcohol - Highland -

Single Malts mean

Amyl alcohol - Speyside -

Rum mean