

CHANGE IN LAND USE INFLUENCES MITIGATION OF METHANE EMISSION FROM SOILS

Loic Nazaries^{1,3}, Brajesh Singh¹, Pete Millard¹, Elizabeth Baggs², Colin Murrell³: ¹The Macaulay Land Use Research Institute, Aberdeen, ²University of Aberdeen, ³University of Warwick • I.nazaries@macaulay.ac.uk Measurements of CH₄ fluxes from different land uses

Methane facts

- Methane (CH₄) is a green-house gas and contributes to ~20% of alobal warming
- potent than CO_2 [1]
- 56% of world emissions due to human activities (e.g. agriculture, landfills, etc.)
- Removal by natural processes (95% by atmosphere: 5% by soils
- CH₄ oxidation by soil bacteria (methanotrophs). particularly in temperate forests

Objectives

- Determine methane fluxes from grassland, pine forest, bog, moorland, and birch forest
- · Estimate their contribution and the effect of land-use change to the national CH₄ budget
- Identify the methanotroph communities present in each land use and determine the shift in their structure when land management is altered

Four sites in Scotland sampled

- Observation of seasonal changes
- Laboratory incubation of soil cores

Contribution of land uses to national CH₄ budget

- Upscaling of local CH₄ flux data to a yearly estimate
 - CH₁ emission (flux>O) in non-forested areas
 - CH₄ oxidation/sink (flux<0) in forests
- Relate the CH₄ flux of each land uses to their area in Scotland to calculate their contribution to the national CH₁ budget
 - Balance between sources and sinks is a positive CH₄ emission from nonforested areas (+2 kt)

Take-home messages

- Afforestation (land conversion) into forest) has a positive impact on CH₄ mitigation
- Bog afforestation would be more potent at mitigating methane than moorland or grassland afforestation
- Bog afforestation could offset methane emissions from non-afforested areas
- Additionally, it could offset almost 7% of the CH₄ emissions due to animal production

Effect of land-use change on CH₄ mitigation

- Based on the conversion of 50% of the original land use
- 1. Grassland conversion into pine
 - Balance between sources and sinks is neutral
- 2. Moorland conversion into birch forest:
 - Balance between sources and sinks is a positive CH₄ sink by forests (-2 kt)
- 3. Bog conversion into pine forest: - Balance between sources and
 - sinks is a positive CH₄ sink by forests (-7 kt)

Future work

 Molecular approaches: Information on how land-use changes affect structure and diversity of methanotrophs

- Identification of specific bacterial species and genera (T-RFLP, cloning) (3

structure with function (PLFA-SIP. DNA-SIP1(4)