Alternative splicing and nonsense-mediated decay controls expression of important regulatory genes in Arabidopsis

Craig G Simpson1, Maria Kalyna2, Naeem Syed3, Yamile Marquez2, Andrea Barta2 and John W. S. Brown3

1The James Hutton Institute, Invergowrie, Dundee, UK. 2Max F. Perutz Laboratories, Vienna, Austria. 3University of Dundee, UK. E-mail: craig.simpson@hutton.ac.uk

Introduction

Alternative splicing (AS) coupled to nonsense-mediated decay (NMD) is a post-transcriptional mechanism for regulating gene expression. In the absence of splicing sensitive microarrays in plants, we have used a high-resolution AS RT-PCR based panel to measure relative isoform level changes in endogenous AS genes when NMD was impaired in Arabidopsis NMD factor mutants upf1-5 and upf3-1 and by Cycloheximide.

NMD Targets of Endogenous Alternatively Spliced Genes

We performed high-resolution RT-PCR using a panel of 298 primer pairs in 270 endogenous genes and identified around 950 AS products. AS genes represent mainly important transcription factors, RNA binding proteins and stress related proteins.

250 new products discovered - many sequenced.

Salt Overly Sensitive - Calcium abuse protein 4

NMD mutants and Cycloheximide treatment impair NMD to different extents

NMD transcripts show a significant increase in abundance in the upf mutants and retain abundance when transla
tion is blocked by CHX.

121 genes showed at least one isoform up-regulated in the mutant and CHX treated plants, suggesting around 45% of the selected genes show AS/NMD. Considering 43% of plant genes show AS (Filichkin, 2010) suggests that around 5% of plant genes show AS/NMD.

4 examples of alternative splicing events that introduce premature termination codons and increase significantly in the treatments are shown.

RS40, PPI and Aly1/Ref show that AS/NMD transcripts represent a significant proportion of the transcripts of a gene in wild type plants.

The NMD transcripts are detectable in wild type plants and increase in abundance to different extents in the upf mutants/CHX.

Features of alternatively spliced transcripts sensitive to NMD

All of the alternatively spliced transcripts sensitive to NMD in the mutants and 11 transcripts from the cycloheximide treatment were characterised in terms of whether they contained PTCs, had splice junctions downstream of the authentic stop codon or PTCs, had long 3'UTRs but did not increase in abundance to different extents in the upf mutants.

AS in 3'UTRs modulate NMD

The position of PTCs defines the lengths of 3'UTRs, which can trigger NMD. 3 genes show variable length 3'UTRs through alternative splicing but have the same authentic termination codon. In the example below the longer transcript (68nt) was retained in the upf mutants and/or cycloheximide treatment suggesting that they are not turned over by the NMD pathway.

AS PTC+ No NMD

uORFs overlapping start codons induce NMD

AS in the 5'UTR affect the presence/absence length and position of PTCs and NMD. 7 genes had uORFs that overlapped the authentic translation start suggesting a mechanism for uORFs as a trigger for NMD.

Retained introns are not sensitive to NMD

15 intron retention AS events had PTCs with downstream splice sites or long 3'UTRs but did not increase in abundance in the upf mutants and/or cycloheximide treatment suggesting that they are not turned over by the NMD pathway.

Conclusions

- We demonstrate a previously unknown prevalence of AS/NMD in plants and also find many new AS events in the genes studied.
- Alternative splicing in 5' and 3'UTRs affects transcript levels and uORFs overlapping the start codon trigger NMD.
- Intron retention events do not trigger NMD despite possessing all the features that induce NMD.
- NMD sensitive transcripts are readily detected in wild type plants, often representing a significant proportion of the total transcripts.