Glomus does not influence caesium uptake by *Medicago truncatula* at high external caesium supply

Lea Wiesel^{1,2}, Martin R. Broadley² and Philip J. White¹ ¹ Scottish Crop Research Institute. Invergowrie, Dundee, DD2 5DA, UK

¹ Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK ² University of Nottingham, School of Bioscience, Loughborough, LE12 5RD, UK

Caesium isotopes

- Radionuclides ¹³⁴Cs and ¹³⁷Cs:
- Emission of harmful β and γ radiation
 Rapid incorporation into biological systems
- Long half-lives
- Sources of radiocaesium contamination are global fallout and accidental release from nuclear facilities.
- Natural concentrations of the stable isotope ¹³³Cs in soil are several orders of magnitude higher than concentrations of radioactive isotopes.

Potassium transport proteins

Caesium (Cs) is chemically similar to potassium (K). Root uptake mechanisms cannot differentiate between these elements easily. Several K transporters can contribute to Cs uptake by roots. In K-replete plants Cs uptake is mediated by VICC, but in K-deficient plants Cs uptake is mediated by KUP (Fig. 1).

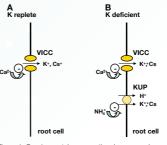


Figure 1: Caesium uptake across the plasma membrane of root cells under (A) K-replete and (B) K-deficient conditions. VICC (voltage-independent cation channels); KUP (high-affinity K/H symporters)

Arbuscular mycorrhiza

SCL

The University of Nottingham

Most vascular plants live in symbiosis with arbuscular mycorrhizal (AM) fungi. These can improve plant K nutrition and might therefore influence plant Cs uptake.

Hypothesis

If mycorrhizae improve plant K status, then Cs uptake by mycorrhizal roots would occur mainly through VICC and AM fungi would decrease the accumulation of Cs by reducing the abundance of KUP.

Material and Methods

Experiment 1: An *in vitro* system was used to grow *Medicago truncatula* (Fig. 2) in association with *Glomus sp.* The plants were cultivated under K-deficient conditions with or without the addition of 0.05 mM Cs and harvested after nine weeks. Concentrations of elements were measured using ICP-MS (PerkinElmerSCIEX, Massachusetts, USA). Mycorrhizal colonisation rate was 17.8% in roots of plants grown without Cs and 9.8% in roots of plants grown with Cs in the medium.

Experiment 2: *M. truncatula* was grown in association with *Glomus intraradices* in a sand:clay mixture. The plants were supplied with increasing amounts of ¹³³Cs and ¹³⁴Cs (Table 1) and harvested after ten weeks.

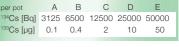
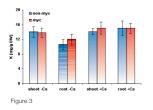
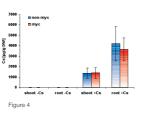
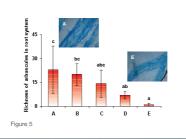



Table 1: Supply of ¹³³Cs and ¹³⁴Cs.


Results

Mycorrhizal infection does not affect K concentrations in shoots or roots of *M. truncatula* plants (exp 1).


Blue bars represent non-mycorrhizal plants and red bars represent mycorrhizal plants. Mean K concentration [mg/g DW] ± SE

Mycorrhizal infection does not affect Cs concentrations in shoots or roots of *M. truncatula* plants (exp 1). Blue bars represent non-mycorrhizal plants and red bars represent mycorrhizal plants. Mean Cs concentration [µg/g DW] ± SE

High external Cs concentrations interfere with mycorrhizal colonization (exp 2). Richness of arbuscules in the root system of *M. truncatula* plants

Conclusions

- High external Cs concentrations interfere with the induction of AM symbiosis
- Under natural stable Cs concentrations AM fungi do not influence Cs uptake by plants

Acknowledgements

This research project has been supported by a Marie Curie Early stage Research Training Fellowship of the European Community's Sixth framework Programme under contract number MEST-CT-2005-020387.

The authors would like to thank Katarzyna Turnau and Sergiy Dubchak (Jagiellonian University, Krakow