Do arbuscular mycorrhizal fungi influence caesium uptake by Medicago truncatula?

Lea Wiesel^{1,2}, Martin R. Broadley² and Philip J. White¹ ¹ Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
² University of Nottingham, School of Bioscience, Loughborough, LE12 5RD, UK

Radiocaesium contamination

- Radionuclides ¹³⁴Cs and ¹³⁷Cs:
 - Emission of harmful β and γ radiation
 - Rapid incorporation into biological systems
 - Long half-lives
- · Sources of radiocaesium contamination are global fallout and accidental release from nuclear facilities

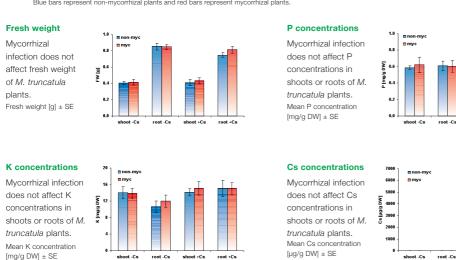
Hypothesis

If mycorrhizae improve plant K status, then Cs uptake by mycorrhizal roots would occur mainly through VICC and AM fungi would decrease the accumulation of Cs by reducing the abundance of KUP.

Potassium transport proteins

Caesium (Cs) is chemically similar to potassium (K). Root uptake mechanisms cannot differentiate between these elements easily. Several K transporters can contribute to Cs uptake by roots. In K-replete plants Cs uptake is mediated by VICC, but in K-deficient plants Cs uptake is mediated by KUP (Fig. 1).

Material and Methods


An in vitro system was used to grow Medicago truncatula (Fig. 2) in association with Glomus sp. The plants were cultivated under K-deficient conditions on modified Hoagland's medium containing 1 mM K with or without the addition of 0.05 mM Cs. After nine weeks the plants were harvested, oven dried and acid digested in a microwave. Concentrations of elements were measured using ICP-MS (PerkinElmerSCIEX, Massachusetts, USA). Mycorrhizal colonisation rate was 22.5% in roots of plants grown without Cs and 5% in roots of plants grown with Cs in the medium.

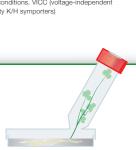
A plasma membrane , asma membrane vicc VICC K*, Cs K⁺, Cs KUP root cell root cel

Figure 1: Caesium uptake across the plasma membrane of root cells under (A) K-replete and (B) K-deficient conditions. VICC (voltage-independent cation channels); KUP (high-affinity K/H symporters)

Results

non-mycorrhizal plants and red bars represent mycorrhizal plants Blue bars rep

Conclusions


In the in vitro system used here

- Mycorrhizal infection did not affect fresh weight of M. truncatula plants
- Mycorrhizal infection did not affect the accumulation of K, P or Cs

Acknowledgements

arch project has been supported by a Marie Curie Early stage Research Training Fellowship of the European Community's Sixth fram ork Programme under contract number

MEST-CT-2005-020387. Travel was supported by a Carr Scholarship, a Lamming Postgraduate Travel Award (both from the University of Nottingham) and by the Company of Biologists through the SEB

Nottingham