

Pining for the future: which pine trees where?

Jenni Stockan, Joan Beaton, Alison Hester, Glenn Iason

Stephen Cavers, Annika Perry (CEH) Joan Cottrell, Roger Moore (FR)

Aim & objective

- To understand and manage the consequences of environmental and climate change for ecosystem resilience.
- Effects of tree genetics and environmental factors on tree performance, tree health including pests and pathogens, associated biodiversity and ecosystem processes.

21 populations

8 mother trees

3-4 blocks

Survival & growth

Survival & growth

	VVald	р
Site	403.76	<0.001
Provenance	8.59	< 0.001
Family	1.85	< 0.001

VAZ 11

REML analysis with Site, Provenance and Family (nested within Provenance) as fixed effects, Block nested within Site as a random effect.

Invertebrate Biodiversity

	Year	Variable	Wald
Abundance	2015	Site	26.26***
		Provenance	42.68**
	2017	Provenance	31.92*
		Family	87.82*
Species richness	2015	Site	19.02***
		Provenance	48.61***
	2017	Provenance	31.90*
Abundance pine specialists	2015	Site	44.41***
	2017	Site	5.47**

Insect pests

Causal group	Year	Variable	Wald
Hylobius abietis	2015	Site	72.98***
		Site*Provenance	82.02***
	2017	Site	17.92***
		Site*Provenance	33.27*
Symphyta	2015	Site	132.65***
		Site*Provenance	84.19***
		Family	95.66*
	2017	Provenance	45.03***
		Family	97.36**

Fungal pathogens

Species	Variable	Wald
Dothistroma	Site	193.08***
	Provenance	1.88*
Lophodermella	Site	25.91***
	Provenance	5.81***
	Site*Provenance	3.23***
Lophodermium	Site	92.91***
	Provenance	1.82*
Coleosporium	Site	24.10***

Dothistroma prevalence (Glensaugh)

Conclusions

- Growing site has the greatest effect on tree growth, associated biodiversity, pests and pathogens
- Provenance (and family) have a significant influence
- Western provenances grow faster, greater biodiversity, fewer pathogens

Acknowledgements

- National Trust for Scotland at Inverewe Gardens
- Donald Barrie, Glensaugh Farm
- Richard Hewison, David Sim, Sheila Reid, Patrick Sherwood (JHI), Jackie Potts (BIOSS)
- Funded by the Scottish Government's Rural and Environment Science and Analysis (RESAS) Division

