
1

Technical report: progress with developing an outcome-based web

application

RESAS1.2.4.3 [D6 Technical report]

Authors: Kit (C.J.A.) Macleod* and Richard Hewitt, James Hutton Institute,

Aberdeen, UK.

*Corresponding author: kit.macleod@hutton.ac.uk

Suggested citation: Macleod, C.J.A. and R. Hewitt (2018). Technical report: progress with developing

an outcome-based web application. James Hutton Institute.

mailto:kit.macleod@hutton.ac.uk

2

Contents
Executive summary ... 3

1. Introduction .. 4

1.1 Purpose ... 4

1.2 Background ... 4

1.3 Overview of six linked challenges related to producing web applications 5

2. Summary of previous application development steps ... 5

2.1 Initial broad review of approaches and software options .. 5

2.2 Understanding stakeholder needs and developing an initial set of requirements 6

2.3 Development and testing of a spatially explicit web-based prototype .. 6

2.3.2 Design of prototype based on seven screening criteria .. 6

2.3.2 Stakeholder feedback .. 9

2.3.3 What learned ... 9

3. Overview of developing mobile web and native mobile applications .. 10

3.1 Summary of four broad approaches to building mobile web and native mobile applications .. 10

3.2 Three general points to be aware of when developing mobile web applications...................... 11

3.2.1 Web applications are dependent on a wide range of technologies 11

3.2.2 A range of technology stacks can be used for creating web applications 12

3.2.3 These technologies and associated best practices are constantly evolving 13

4. Deciding how to implement requirements of the application ... 13

4.1 Deciding how to implement requirements for off line working across a range of platforms 13

4.1.1 Overview of server and client side rendering .. 14

4.2 Deciding how to implement requirements for map related functionality 15

4.2.1 OpenLayers .. 15

4.2.2 Leaflet .. 16

4.2.3 Mapbox GL ... 16

5. Current status and next steps ... 17

Acknowledgements ... 17

References .. 18

3

Executive summary
This technical report sets out progress with developing a spatially explicit Facilitated Outcome-based

Land Management (FOLM) web application based on user stories developed from functional and

non-functional requirements provided by stakeholders. We present: a summary of previous

development activities; an overview of developing mobile web and native mobile applications,

including general points to be aware of when developing mobile web applications; and examples of

development options related to how we implement draft user stories in our web application.

There are six main linked challenges to producing useful working web applications: 1) understanding

what people actually need from your software- to aid an existing or new task, 2) deciding exactly

what you will build i.e. a requirements process, 3) deciding how you will implement those

requirements, 4) building a working web application, 5) testing your software to ensure that it works

as expected, and 6) an overarching challenge related to common development practice of

considering and dealing with the first five challenges in an iterative and continuous manner.

In this report we focus on the third of these challenges- deciding how to implement stakeholder

prioritised requirements, and its connections to the second (deciding exactly what you will build),

fourth (building a working web application) and sixth challenges (iterative and continuous

development).

The first two phases of our development process focussed on the first two challenges. From an initial

broad review of software options, we learned that software options grouped under the heading

‘software packages and applications for developing web-based applications’ were most likely to

meet our initial screening criteria. Reponses from 14 interviews highlighted the need for practical

tools to facilitate decision making about land and water management based on a range of

environmental and financial outcomes. We developed and demonstrated an initial spatially explicit

web-based prototype during a stakeholder workshop. Feedback from this demonstration was

grouped under five broad headings: 1) supporting land manager decisions, 2) an easy to use and

adaptive tool/application, 3) evidence and uncertainty, 4) the scale at which the tool/application

operates, and 5) interactions between actions and their impact on environmental state.

In this report we summarise four broad approaches to building web and mobile applications. To

meet the requirement for our application to work online and offline across a range of platforms, we

decided to implement a progressive web application.

Then we highlight three general points to be aware of when developing web applications: the first is

that a web application is dependent on a wide range of technologies; second, there is no single

solution to meeting the requirements, as there are several groups of technologies (often referred to

as software/solution stacks) that can be used for creating web applications; and the third point is

these technologies and associated best practices are constantly evolving.

There are a range of options when deciding to implement map related functionality in our

application. We provide a summary of the most relevant options that have potential to meet our

requirements e.g. free technologies that enable dynamic maps in web applications. These are

OpenLayers, Leaflet, and Mapbox GL. Our next steps are to continue working on challenges four

(building a working web application), five (testing your software to ensure that it works as expected)

and six (iterative and continuous development).

4

1. Introduction

1.1 Purpose
This technical report sets out progress with developing an outcome-based web application through

user stories1 created from stakeholder prioritised functional2 and non-functional requirements3 (see

Figure 1 and (Macleod and Hewitt, 2018)). Where user stories are written from the perspective of a

person using the software, and are short, high-level descriptions of functionality i.e. high-level

definition of what the software is capable of doing. In this document we present a summary of

previous development steps, an overview of developing mobile web and native mobile applications4

including general points to be aware of when developing mobile web applications, and examples of

development options related to how we implement requirements of the outcome-based web

application (see Figure 1 and (Macleod and Hewitt, 2018)).

1.2 Background
This technical report (D3.6) is part of the Scottish Government Strategic Research Programme (SRP)

project ‘Assessment of the effectiveness of interventions to achieve water policy objectives (RESAS

1.2.4 Objective 3)’ developing a Facilitated Outcome-based Land Management (FOLM) application to

aid land manager decision-making for multiple benefits (Figure 1). There is increasing interest in how

we improve targeting of land and water management actions e.g. Scottish Rural Development

Programme5 (SRDP) management options for one or more environmental outcomes.

Figure 1 Outline of our process to develop an outcomes-based approach

1
 https://en.wikipedia.org/wiki/User_story

2
 https://en.wikipedia.org/wiki/Functional_requirement

3
 https://en.wikipedia.org/wiki/Non-functional_requirement

4
 https://www.pcmag.com/encyclopedia/term/47651/native-application

5
 http://www.gov.scot/Topics/farmingrural/SRDP

5

1.3 Overview of six linked challenges related to producing web applications
Five of the six main linked challenges to producing useful working web applications are: 1)

understanding what people actually need from your software- to aid an existing or new task, 2)

deciding exactly what you will build i.e. a requirements process, 3) deciding how you will implement

those requirements, 4) building a working web application, and then 5) testing your software to

ensure that it works as expected. In earlier reports we explored what people may need from our

outcome-based web application (Macleod and Hewitt, 2017b, Macleod and Hewitt, 2017a, Macleod

and Hewitt, 2018); Figure 1). In a related report (Figure 1, D5) we present a list of prioritised

requirements presented as draft user stories- to set out specific functionality or constraints the

software needs to satisfy (Macleod and Hewitt, 2018). In Vitolo et al. (2015), the lead author

discussed the third and fourth challenges of deciding how to implement a web application and

building it, with reference to development of a flooding application and what was learned. The

practice of software development is littered with examples of good practice and tools to aid the

testing of software e.g. (Myers et al., 2011). A sixth and overarching challenge relates to the

common development practice of considering and dealing with these five linked challenges in an

iterative and continuous manner.

In this report we focus on the third of these challenges- deciding how to implement prioritised

requirements, and its connection to the second (deciding exactly what you will build), fourth

(building a working web application) and sixth challenges (iterative and continuous development). As

set out in the related report (Figure 1, D5), we are using best practices from people-centred

development process including: analyse requirements and needs, design for usability by

prototyping6, evaluate in context, and gather feedback to aid planning the next iteration (Gulliksen

et al., 2003, Macleod and Hewitt, 2018). This technical report is a stepping-stone to a later technical

report (Figure 1, D7) on revising an outcome-based web application- focussing on challenges four,

five and six.

2. Summary of previous application development steps
In this section we briefly summarise previous development activities in the first two phases and

what we have learned (Figure 1); these activities have focussed on the first two challenges (Section

1.3).

2.1 Initial broad review of approaches and software options
After reviewing the theory and practice of logic modelling and adaptive management7, and

discussing these with stakeholders (Figure 1); we reviewed potential software options for producing

our outcome-based approach, using a set of screening criteria (Table 1) (Macleod and Hewitt, 2017a,

Hewitt and Macleod, 2017). From this review we learned that software options grouped under the

heading ‘software packages and applications for developing web-based applications’ were most

likely to meet our initial screening criteria (Table 1). Further details of this activity can be found in

(Macleod and Hewitt, 2017a, Hewitt and Macleod, 2017).

6
 https://en.wikipedia.org/wiki/Prototype

7
 https://en.wikipedia.org/wiki/Adaptive_management

6

2.2 Understanding stakeholder needs and developing an initial set of

requirements
We carried out interviews with 13 regional and national level stakeholders involved with natural

resource management8 in Scotland. Interviewees were asked about their needs for developing a

more integrated approach to land use and catchment management using incentives and regulations

for the delivery of multiple benefits. Their responses highlighted the need for practical tools to

facilitate decision making about land and water management based on a range of environmental

and financial outcomes (Macleod and Hewitt, 2017a).

We then arranged a workshop, and asked a group of participants to rate 17 ‘needs’ which had been

extracted from the earlier interviews. A need was defined as something we wanted to address with

the approach and software application. The participants were invited to “please rate how important

is this need for developing tools to support decisions about the effectiveness of land management

interventions for multiple benefits?” Details of the workshop can be found in (Macleod and Hewitt,

2017b).

2.3 Development and testing of a spatially explicit web-based prototype

Figure 2 Touch table demonstration of spatially explicit web-based prototype

2.3.2 Design of prototype based on seven screening criteria

The design of the prototype was undertaken in-line with seven screening criteria that had emerged

through consultations with stakeholders (Figure 1; (Hewitt and Macleod, 2017)):

8
 https://en.wikipedia.org/wiki/Natural_resource_management

7

1. Should be free at the point of use

Development was undertaken using R9, a well-known free and open-source computing environment

for statistical computing and graphics. The start-up script was written in Visual Basic Scripting

language (VBScript)10, which is available to all Windows users. The start-up script was optional, and

the prototype can be used without it.

2. Should work on touch devices like mobile phones, tablets and larger touch tables

The prototype was developed for, and tested on a large touch table running Windows 10; to enable

demonstration and discussion with a small group.

3. Should have map-based functionality for users to interact with spatial information

e.g., information on fields and other features related to land and water management

The prototype comprised a large map window with interactive button functionality on the right hand

side to allow people to interact with the map. The map-based functionality was provided by the

open source Leaflet11 JavaScript library, which is designed to provide mobile friendly interactive

maps (Figure 3).

The prototype included data sets on hydrological sub-catchments and land cover in ESRI shape file

format12 (the best-known and most widely used GIS vector data format), and was explicitly targeted

at land and water management stakeholders. The free and open data source OpenTopoMap13 was

chosen as a background/base map since it is attractive, easily available and provides topographic

information, but any other map layer (e.g. open OS data14) could be used.

Interactions included: selecting a sub-catchment from a drop-down list box (and causing the map to

automatically zoom to the chosen sub-catchment); identifying map features with a single touch; and

extracting a portion of the underlying land cover layer (LCM200715) by drawing a polygon on the

screen (using the Leaflet draw plugin16), and automatically updating the attribute table of the

clipped out polygon with its calculated area; and visualisation of the polygon’s range of land cover

areas as a bar chart (Figure 3).

4. Should include functionality for outcomes-based logic models i.e. linking land

management to a range of outcomes

This functionality was not fully implemented at this stage. The functionality in the above section (3)

is a prerequisite to this more advanced functionality.

5. Should allow developers and end-users to develop and extend the software/existing

application

The prototype could be extended by developers according to user requirements; it was not possible

for users to modify the prototype directly.

9
 https://www.r-project.org/

10
 https://en.wikipedia.org/wiki/VBScript

11
 http://leafletjs.com/

12
 https://en.wikipedia.org/wiki/Shapefile

13
 https://opentopomap.org/#map=5/49.023/10.063

14
 https://www.ordnancesurvey.co.uk/business-and-government/products/opendata.html

15
 https://www.ceh.ac.uk/services/land-cover-map-2007

16
 http://leaflet.github.io/Leaflet.draw/docs/leaflet-draw-latest.html

8

Figure 3 Prototype application running on Windows

Note: This screen capture shows the Water of Tanar sub-catchment of the river Dee in

Aberdeenshire, Scotland. The user has drawn a polygon, which has been clipped out the land cover

base map (LCM2007) and this is displayed to the right of the map window; below it, the area of each

land cover in the polygon is displayed.

6. Should have potential for scientific innovation

Visualisation of complex data in a manageable way is an important area of development in several

areas. The prototype itself was not innovative in a technological sense, since a range of more

advanced interactive web applications for visualisation and manipulation of map-based data exist

under the emerging free and open source web visualisation dashboard paradigm e.g. Tableu’s

Public17, and Plotly’s Dash18. Yet these tools are generic, rather than co-designed together with a

specific user community, like our prototype, and little used in environmental management and

modelling. Thus the development and practical testing of an interactive tool of this kind with a

specific land manager community on the ground would be innovative.

7. Should be actively maintained, preferably through a large, open user community

The R computer language and environment is under active development, for example over the past

six months a number of the procedures used in the prototype have been replaced by more advanced

functionality; the user community is very large, and growing.

17

 https://public.tableau.com/en-us/s/
18

 https://plot.ly/products/dash/

9

2.3.2 Stakeholder feedback

Whilst demonstrating and discussing this initial prototype we received a range of feedback (Table 2).

These were grouped under five broad headings: 1) supporting land manager decisions, 2) an easy to

use and adaptive tool/application, 3) evidence and uncertainty, 4) the scale at which the

tool/application operates, and 5) interactions between actions and their impact on environmental

state (Table 2).

Table 2 Summary of the discussed needs

Supporting land manager decisions
Land management business needs to know where to invest.
Land managers want to know the “value” (not necessarily just in monetary terms)* of a project
benefit.
How to provide the information best so that land manager or their agent can use it?
Objectives are consistent but mechanisms are uncertain.
Land managers need to prioritise their activities based on the value of benefit to them. They are
used to making decisions under uncertainty, evidence helps reduce any risks.
We are talking about options – multiple options under diverse scenarios.
There is a trade-off between diversity (of habitats, species) and [ecological]* connectivity. Thus,
while more diversity may be desirable in some respects, it may reduce connectivity.

Easy to use and adaptive tool/application
Key consideration is how easy is the tool to use? Complex technical tools may not get used.
Tool must be adaptive to political changes/policy changes e.g. Brexit.
People want detailed information, but this is place specific, so a generic tool may not help. There is a
clear tension between site-specific information and general approaches.
There is in fact no single answer to “what’s best”. Need a system tool that is weighted towards
obtaining diverse outcomes.

Evidence and uncertainty
Evidence is vital. Need to be very careful how to present it given its inherent uncertainty.
Balancing and managing risk under uncertainty. Greater local focus may mean more uncertainty in
data available.

Scale at which the tool/application operates and
Key question is the scale at which the tools operate.
Three main users for a potential tool can be identified: Grant giving body– want to know how best to
use public money; Land manager – wants to know what impact will this have, what options are
available to me?; and Communities – need to help communities in collective decision making.

Interactions between actions, and their impact on state of the environment
Interventions can change what is needed (at later times and in other locations). There is a
cumulative effect [around uptake of SRDP options] such that there may be diminishing returns, i.e.
once my neighbour does it may be less valuable for me to do it. Could this be reflected somehow in
tools?

*Curved parentheses indicate insertions by the speaker during their own intervention; square
parentheses indicate insertions by the facilitator, either during the intervention or while compiling
the report. The facilitators’ insertions were attempts to clarify something that was evident.

2.3.3 What learned

The feedback in Table 2 reinforced the previous identified need for simple to use tools to aid land

manager decision making about management actions and linked to evidence of potential

environmental outcomes. Demonstrating the prototype was invaluable; as it highlighted that an

interactive spatially explicit application could meet land manager needs. Further details from the

10

workshop are presented in (Macleod and Hewitt, 2017b). One important next step highlighted

during the workshop, was the need to implement offline functionality; this would also be innovative,

since most web-based dashboard type applications require an active internet connection.

The prototype demonstrated the ability to manipulate spatial information in the form of a land cover

map and its attributes, which can be: removed, added, recalculated and displayed as desired, subject

to minor modifications to the program. The polygon area was chosen as an easily understandable

demonstration attribute, but clearly any data that can be associated with a polygon such as soil type

can be queried in this way. Examples not implemented could include estimated nutrient export

(given a nutrient export/ha approximation) or cost of some measure (given a cost/ha

approximation).

3. Overview of developing mobile web and native mobile applications
The purpose of this section is to provide an overview of the state of play with developing mobile

application technologies. The focus is on the development of our application and is not meant to be

a comprehensive review.

3.1 Summary of four broad approaches to building mobile web and native

mobile applications
When developing for mobile platforms, you need to be aware of the different hardware

characteristics compared to desktop or laptop computers: for example working with small touch

screens and different application programming interface19 (APIs) e.g. geolocation.

There are (at least) four broad types of technologies for building web or mobile applications.

Progressive web applications20 are based on traditional web applications that can be viewed through

a web browser e.g. Chrome or Firefox, and are built with HTML521 and JavaScript22. HTML5 is the

latest version of the standard that defines HyperText Markup Language (HTML) that enables more

diverse and powerful web sites and applications to be built. The reason they are called progressive

web applications is that a range of technologies enables improved user experience, for example

enabling faster loading of content and offline working.

A second type are native mobile applications, which you downloaded from an app stores e.g.

Android23 apps from Google Play Store that are built with Java24 or Kotlin25, or Apple26 apps from the

Apple App Store which are built with Objective C27 or Swift28. Native mobile applications are written

and optimised to work on one specific platform e.g. on Apple mobile devices. They are often fast,

and once installed, work offline. However, they can be expensive to produce as you need specific

19

 https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
20

 https://developers.google.com/web/progressive-web-apps/
21

 https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
22

 https://developer.mozilla.org/bm/docs/Web/JavaScript
23

 https://developer.android.com/index.html
24

 https://java.com/en/
25

 https://kotlinlang.org/
26

 https://developer.apple.com/
27

 https://developer.apple.com/documentation/objectivec?language=objc
28

 https://developer.apple.com/documentation/swift

11

programming expertise to produce them, and different codebases29 are required for multiple mobile

platforms.

A third type of mobile applications are called hybrid mobile applications; these are built using

specific technologies e.g. Cordova30 or the Ionic31 framework (based on the Angular JavaScript

framework). These technologies allow you to use a single HTML/JavaScript codebase across several

platforms, by wrapping then in a native container for Android or Apple mobile devices. These

technologies enable fairly easy development of applications that will work on mobile devices from a

single codebase (to a certain extent). Their performance and functionality is limited due to being

implemented through browser-based WebViews within the native mobile platform32.

A fourth type of technology for building mobile applications allows you to use JavaScript to create a

native mobile application: a popular example is React Native33. Advantages of using React Native are

that a ‘real’ mobile application can be produced using the same building blocks of iOS and Android

apps, and allow you to include native code when needed. Disadvantages include the different

codebases for each mobile and desktop/laptop platform.

Each of these four options for building mobile applications have relative advantages and

disadvantages, and these depend on who (and what expertise they have) is building what

application, under what constraints. The purpose of this section was to provide an overview of these

technologies and not to present a comprehensive review.

In this report (and project) we are currently focused on building a progressive web application; as

this is the simplest way to develop a map based application that can be used across a range of

platforms e.g. desktop and mobile devices, offline or online.

3.2 Three general points to be aware of when developing mobile web

applications
There are three general points to be aware of when developing mobile web applications (for

example a progressive web app): the first is that a web application is dependent on a wide range of

technologies; second, there is no single solution to meeting the requirements, as there are several

groups of technologies (often referred to as software or solution stacks34) that can be used for

creating web applications; and the third point is these technologies and associated best practices are

constantly evolving.

3.2.1 Web applications are dependent on a wide range of technologies

Traditionally web applications involve a range of software technologies that communicate between

desktop/laptop/mobile devices (often referred to as the client-side35) with other computers called

servers (often called the server-side36). Software on servers would respond to requests from client

side e.g. when data was submitted in a form or a button was pressed. The software is built using a

29

 https://en.wikipedia.org/wiki/Codebase
30

 https://cordova.apache.org/
31

 https://ionicframework.com/
32

 https://cordova.apache.org/docs/en/latest/guide/hybrid/webviews/index.html
33

 https://facebook.github.io/react-native/
34

 https://en.wikipedia.org/wiki/Solution_stack
35

 https://en.wikipedia.org/wiki/Client-side
36

 https://en.wikipedia.org/wiki/Server-side

12

range of computer languages e.g. on the client-side: HTML37 describes and defines the content of a

web page; along with Cascading Style Sheets (CSS)38, a stylesheet language, that describes how

HTML documents are presented; and the JavaScript programming language which is used as a

scripting language for making web pages and applications interactive (it can also be used in non-

browser environments). This occurs through manipulation of the Document Object Model39 (DOM),

which is an object-orientated representation of a web page40. More recently, a wider range of the

functionality provided by server-side code can also be carried out on the client-side (see Section

4.1.1); one reason for this is that communications between the client-side and server-side can be

time consuming. Nearly all web and mobile applications include additional technologies: for example

they (nearly) all make use of some form of database technology to organise collections of data41, as

well as software that enables the visualisation of data in graphs and/or maps. There is far greater

detail to these technologies and their use; this simplified description is meant to illustrate the

diversity of technologies that are utilised to create progressive web applications, and other mobile

applications.

3.2.2 A range of technology stacks can be used for creating web applications

In addition to common technologies e.g. particular database software that can be found in a wide

range of dynamic web applications42. There are distinct technology stacks that are the main

components of web applications. The archetypal stack is referred to as LAMP43, which is an acronym

of the four main technologies: the Linux44 operating system (on the server), the Apache HTTP

Server45 (deals with requests from the browser and sends responses), the MySQL46 relational

database (on the server holds data about the application and its use), and the PHP47 programming

language (used on a server to write the application, that was interpreted by the web server

software). There are many variants of these technologies.

The current range of technology stacks is far more diverse than this simple LAMP example. One

reason for this diversity is the increase in use of JavaScript on the server and client side. Examples of

JavaScript stacks include MEAN48 or MERN49: standing for MongoDB50 (NoSQL51 database), Express52

(JavaScript web server), Angular53 or React54 (two major JavaScript frameworks for creating web

applications) and Node55 (a JavaScript runtime that is popular in part due to its ability to handle

37

 https://developer.mozilla.org/en-US/docs/Web/HTML
38

 https://developer.mozilla.org/en-US/docs/Web/CSS
39

 https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
40

 https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
41

 https://en.wikipedia.org/wiki/Outline_of_databases
42

 https://en.wikipedia.org/wiki/Dynamic_web_page
43

 https://en.wikipedia.org/wiki/LAMP_(software_bundle)
44

 https://en.wikipedia.org/wiki/Linux
45

 https://httpd.apache.org/
46

 https://en.wikipedia.org/wiki/MySQL
47

 https://en.wikipedia.org/wiki/PHP
48

 http://mean.io/
49

 http://mern.io/
50

 https://www.mongodb.com/
51

 https://en.wikipedia.org/wiki/NoSQL
52

 https://expressjs.com/
53

 https://angular.io/
54

 https://reactjs.org/
55

 https://nodejs.org/en/

13

asynchronous events). Once again, this is a very simplified explanation of the technology stacks

involved with creating web applications.

3.2.3 These technologies and associated best practices are constantly evolving

The third point is the changing nature of the technologies involved in building web applications.

Some of these changes are small e.g. updates to particular software packages or libraries, but others

are large e.g. increased used of modularisation with JavaScript. For example large changes to

JavaScript in 2015 (officially called ECMAScript201556) introduced the use of modules to enable

developers to split up their code into multiple files, and encouraged code reuse. Changes to

standards like this example, then produce a wave of changes to the software that uses or is

dependent on JavaScript: including new technologies and best practices e.g. using module bundlers

like Webpack57.

4. Deciding how to implement requirements of the application
In a related report ‘Developing an outcome-based web application: principles and requirements

specification’ we set out lists of functional and non-functional requirements based on user stories

(Macleod and Hewitt, 2018). In this section we explore software options for achieving the highest

rated and fundamental functional requirements, whilst meeting key non-functional requirements

(Table 3). These initial user stories need to be unpacked, to set out what functionality is exactly

required.

4.1 Deciding how to implement requirements for off line working across a

range of platforms
To meet the requirements for our application to be able to work online and offline across a range of

platforms, we decided to implement a progressive web application. Progressive web applications are

changing how mobile and web applications are being developed58. These changes include: 1)

improve user experience though more reliable apps (e.g. load instantly), with faster responses to

user interactions (e.g. response to selecting an item or location on a map), and feel like a native

Android or iOS apps, even when no network is available (e.g. 2-4G or wifi signal); and 2) enable

developers and researchers to produce a single application, that can be used across all mobile and

web platforms.

Developing progressive web applications involves following best practices e.g. progressive web app

checklist59 and using related technologies e.g. service workers60. It is essential to ensure the pages

are responsive on mobile devices. Google has produced the free and open source Lighthouse tool for

automated testing of progressive web applications61.

56

 http://www.ecma-international.org/ecma-262/6.0/index.html
57

 https://webpack.js.org/
58

 https://developers.google.com/web/progressive-web-apps/
59

 https://developers.google.com/web/progressive-web-apps/checklist
60

 https://www.w3.org/TR/service-workers/
61

 https://developers.google.com/web/tools/lighthouse/

14

Table 3 Initial requirements to guide development of our approach

Requirement Examples of initial user stories

Functional

1. Spatial location of
interventions

As a land manager, I want to see the spatial location of
interventions so that I can decide where to implement ‘water
margin in arable field’ SRDP AECS management option.

2. Information needs to be
provided in a digestible format

As a land manager, I want the information to be provided in a
digestible format so that I can decide where to implement
SRDP AECS management options.

Non-functional /constraint

3. It will be accessible for
anyone to use.

As a land manager, I want to access the application from my
tablet in a field.

4. It will be relevant and
practical for land managers.

As a land manager, I want to explore relevant SRDP AECS
management options for farm, so that I can understand the
environmental benefits.

5. It will aim to be credible,
with transparency in the
information and methods used.

As a land manager, I want to be able to see the information
and methods used in the web application.

6. It will be designed to be
updateable with new
information as it comes
available.

As a land manager, I want the software to have the latest
information on the SRDP AECS management options.

Web applications traditionally assume that the network is reachable. This assumption pervades the

platform. This places web content at a disadvantage versus other technology stacks e.g. native

mobile applications. Service worker are designed to redress this balance by providing a Web

Worker62 context, which can be started when prompted by user input. Service workers are JavaScript

code that run separately from the main browser thread, intercepting network requests, caching or

retrieving resources from the cache, and delivering push messages63. They are supported across a

wide range of browsers64. Service workers depend on two main APIs to make an application work

offline65: Fetch66 (a standard way to retrieve content from the network) and Cache67 (persistent

content storage for application data). This cache is persistent and independent from the browser

cache or network status.

4.1.1 Overview of server and client side rendering

The architecture most widely implemented, until recently, has been to use server-side rendering,

which involves the browser fetching pages over HTTP68/HTTPS and it immediately returning a

complete page with any dynamic data pre-rendered69. Advantages and disadvantages of server-side

rendering include: it can provide a rapid first render; however, when reloading a page you throw

away the entire DOM for each navigation and this is expensive when parsing, rendering, and laying

62

 https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
63

 https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
64

 https://jakearchibald.github.io/isserviceworkerready/
65 https://developers.google.com/web/ilt/pwa/introduction-to-service-worker
66

 https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
67

 https://developer.mozilla.org/en-US/docs/Web/API/Cache
68

 https://developer.mozilla.org/en-US/docs/Glossary/HTTP
69 https://developers.google.com/web/ilt/pwa/introduction-to-progressive-web-app-architectures

15

out the resources on a web page each time; and it is a mature techniques with a wide range of tools

to support it.

Client-side rendering is when JavaScript runs in the browser and manipulates the DOM. This

provides advantages as page updates take place on the client, so that screen updates occur instantly

when a user interacts with the page. Client-side rendering can selectively re-render portions of the

page (or reload the entire page) when new data is received from the server or following user

interaction.

It is common to render a page on the server and then update it dynamically on the client using

JavaScript. The best practice is to combine server and client-side rendering, so that you first render

the page on the server-side using data from the server directly; when the client gets the page, the

service worker caches everything it needs for the shell70 (interactive widgets and all). Once the shell

is cached, it can query the server for data and re-render on the client (the rendering switches to

dynamically getting data and displaying fresh updates).

4.2 Deciding how to implement requirements for map related functionality
There are a range of options when deciding to implement map related functionality in our

application. Here we provide a summary of the most relevant options that have potential to meet

the requirements (Table 3) e.g. free technologies that enable dynamic maps in web applications;

these are OpenLayers71, Leaflet72 , and Mapbox GL73 .

4.2.1 OpenLayers

Background and status

OpenLayers was originally developed by MetaCarta in 2005, it then became an Open Source

Geospatial Foundation project in 200774. In 2014 OpenLayers v3 was released to take advantage of

new capabilities of modern browsers e.g. WebGL75. It is actively maintained with over 3000 stars and

over 200 contributors on its Github repository76.

Support

The main documentation is clear and well structured77; with links to a range of documentation78

including a helpful ‘quick start’, tutorials (not as easy as Leaflet tutorials to use, due to large install

requirements), workshop material, API docs and wide range of examples.

Functionality

OpenLayers is considered to have a wide range of functionality, often referred to as a full web GIS. It

has ‘draw’ interaction, and the ability to use a range of vector and raster layers. One important

70

 https://developers.google.com/web/fundamentals/architecture/app-shell
71

 https://openlayers.org/
72

 http://leafletjs.com/
73

 https://www.mapbox.com/mapbox-gl-js/api/
74

 https://en.wikipedia.org/wiki/OpenLayers
75

 https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
76

 https://github.com/openlayers/openlayers
77

 https://openlayers.org/
78

 https://openlayers.org/en/latest/doc/

16

aspect of OpenLayers functionality is their use of the JavaScript Topology Suite (JSTS)79, this library

enables creation and manipulation of vector geometries and is a port of the widely used Java

Topology Suite80. This is an advantage over other widely used JavaScript geospatial analysis libraries

e.g. Turf81.

Use in development and production

OpenLayers has moved to semantic versioning82, so there is greater clarity when an

incompatible/breaking API change takes place. OpenLayers is a large library, and to help developers

only install the functionality they require they provide guidance on creating custom builds83

(however this is not as a straightforward process). Advantages of OpenLayers include no need for an

API key to use the standard functionality, and the tight integration with other open source

geospatial projects e.g. OpenStreetMap84.

4.2.2 Leaflet

Background and status

Leaflet was first released in 2011 by Vladimir Agafonkin, who then joined Mapbox in 2013 and he is

still involved in its development85. It is actively maintained with over 21,000 stars and over 550

contributors on its Github repository86.

Support

Like OpenLayers (and Mapbox GL) the main documentation is clear and well structured87, with good

tutorials and API reference.

Functionality

Leaflet provides basic map functionality. Additional functionality is provided through a rich

ecosystem of plugins; however, you need to trawl through the long list of plugins to find those that

are actively maintained88.

Use in development and production

Leaflet is presented as “the leading open-source JavaScript library for mobile-friendly interactive

maps. Weighing just about 38 KB of JS, it has all the mapping features most developers ever need”89.

4.2.3 Mapbox GL

Background and status

Mapbox GL is based on Leaflet, and it uses WebGL to render interactive maps from vector tiles90. It is

actively maintained with over 2700 stars and over 180 contributors on its Github repository91. It is

79

 https://github.com/bjornharrtell/jsts
80

 https://github.com/locationtech/jts
81

 http://turfjs.org/
82

 https://semver.org/
83

 https://openlayers.org/en/latest/doc/tutorials/custom-builds.html
84

 https://www.openstreetmap.org/#map=5/51.500/-0.100
85

 https://en.wikipedia.org/wiki/Leaflet_(software)
86

 https://github.com/Leaflet/Leaflet
87

 http://leafletjs.com/
88

 http://leafletjs.com/plugins.html
89

 http://leafletjs.com/

17

actively supported by Mapbox92,a leading open source location data company that has grown rapidly

since its origin in 2010- with a large amount of venture capital funding.

Support

The main documentation is extensive93 (if a bit hidden amongst other products). It includes a useful

range of examples and API reference. There are clear and structured lists of plugins, which are

maintained by Mapbox94. In addition, there is a well written blog (covering a range of location

products and services)95.

Functionality

Mapbox GL was the first JavaScript web mapping library to make use of WebGL and vectors tiles96.

Mapbox have driven the use of vector tiles, demonstrating the advantages (in most cases) over

traditional raster tiles in terms of seamless navigation between zoom levels and rendering of labels.

Mapbox has also created the leading map design tool called Mapbox Studio97.

Use in development and production

Mapbox GL requires the use of an API key, especially for their vector tiles.

5. Current status and next steps
These three main mapping options are being implemented in a Node.js98 and Express.js99 based

progressive web application. Express is a fast and lightweight web framework for Node.js. It is widely

used in the development of progressive web applications. The next steps (Figure 1) are to continue

working on challenges four (building a working web application), five (testing your software to

ensure that it works as expected) and six (iterative and continuous development).

Acknowledgements
This report was funded by the Rural & Environment Science & Analytical Services Division of the

Scottish Government. We would like to thank the interviewees and workshop participants who have

supported this research.

90

 https://www.mapbox.com/mapbox-gl-js/api/
91

 https://github.com/mapbox/mapbox-gl-js
92

 https://www.mapbox.com/
93

 https://www.mapbox.com/mapbox-gl-js/api/
94

 https://www.mapbox.com/mapbox-gl-js/plugins/
95

 https://blog.mapbox.com/
96

 https://www.mapbox.com/help/define-vector-tiles/
97

 https://www.mapbox.com/mapbox-studio/
98

 https://nodejs.org/en/
99

 https://expressjs.com/

18

References
GULLIKSEN, J., GÖRANSSON, B., BOIVIE, I., BLOMKVIST, S., PERSSON, J. & CAJANDER, Å. 2003. Key

principles for user-centred systems design. Behaviour and Information Technology, 22, 397-
409.

HEWITT, R. J. & MACLEOD, C. J. 2017. What Do Users Really Need? Participatory Development of
Decision Support Tools for Environmental Management Based on Outcomes. Environments,
4, 88.

MACLEOD, C. J. A. & HEWITT, R. 2017a. Summary of research on developing a more integrated
approach to land and water management using incentives and regulations for the delivery of
multiple benefits: exploring national and regional level stakeholder views and needs.: James
Hutton Institute.

MACLEOD, C. J. A. & HEWITT, R. 2017b. Workshop summary: developing an outcome-based
approach for understanding the effectiveness of interventions in catchments for multiple
benefits.: James Hutton Institute.

MACLEOD, C. J. A. & HEWITT, R. 2018. Developing an outcome-based web application: principles and
requirements specification. James Hutton Institute

MYERS, G. J., SANDLER, C. & BADGETT, T. 2011. The art of software testing, John Wiley & Sons.
VITOLO, C., ELKHATIB, Y., REUSSER, D., MACLEOD, C. J. & BUYTAERT, W. 2015. Web technologies for

environmental Big Data. Environmental Modelling & Software, 63, 185-198.

