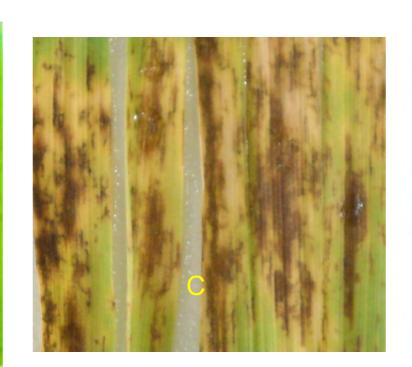
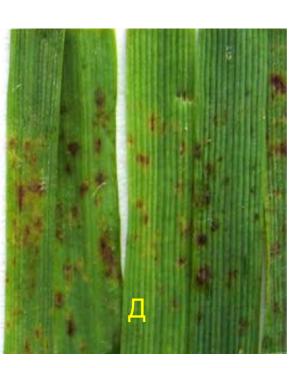

Genetic diversity of Pyrenophora teres f. teres populations on wheat and barley in North-West of Russian Federation


Nina Mironenko*, Ludmila Mikhailova, Irina Ternuk, Nadezhda Kovalenko


All Russian Research Institute for Plant Protection, Saint-Petersburg, Pushkin, Russia *e-mail nina2601mir@mail.ru

P.teres f.teres on barley

a – barley cv.Pirka, b – winter wheat cv.Tarasovskaya 29, c – barley cv.Pirkka, d, e – spring wheat cv.Svecha, a, b, - inoculated by P. teres originated from wheat, c, d - P. teres originated from barley, e wheat inoculated by P. tritici-repentis

P.tritici-repentis + P.teres on wheat

In 2005-2009 the species structure of genera Pyrenophora on wheat in territory of the North Caucasus (Krasnodar krai and Dagestan) and North-West Region (Novgorod, Pskov and Leningrad Region) of Russia was investigated. In 2005-2006 in all surveyed territory only P. tritici-repentis (Ptr) was found out. In 2007 Pyrenophora teres (Pt), the causal agent of barley net blotch was detected on spring wheat in Northwest Region. It was the first finding of this pathogen on wheat in Russia (Mikhailova et al., 2010).

Table 1. Frequency of occurrence *P. teres* (*Pt*) isolates on wheat

Krasnodar krai **North-West Dagestan** Number of isolates Year (%) Total Total Total 2005 26 58 0 47 2006 35 2007

Year	Wheat	Number of isolates		
		Total	Pt	
2007	Spring	30	7	
2001	Winter	25	0	
2000	Spring	22	8	
2008	Winter	55	2	
2009	Spring	62	48	
	Winter	46	17	

Та	ble 2	. Frea	uency d	of occur	rence <i>P.</i>	teres
2009	-	-	94	0	108	60

62

32

2008

	P. teres			P. tritici-repentis	
Wheat	isolated from			isolated from	
cultivar	Winter	Spring	Spring	Winter	Spring
	wheat	wheat	barley	wheat	wheat
Allies	59	60	80	69	46
Riley 67	41	20	0	34	15
Satsukei 86	41	28	7	69	85
Asiago	47	52	0	10	31
Clark	47	68	0	0	31
Hokkai 252	29	60	7	38	46
Komadi 3	29	60	7	52	38
Dartagnan	0	4	0	59	92
Glenlea	59	6	13	100	100
Katepwa	71	44	60	79	85
6B365	53	24	13	52	31
6B662	29	12	27	14	31
Salamouni	23	12	7	27	31
M3	0	0	0	3	0
Number of					
isolates	17	25	15	29	13

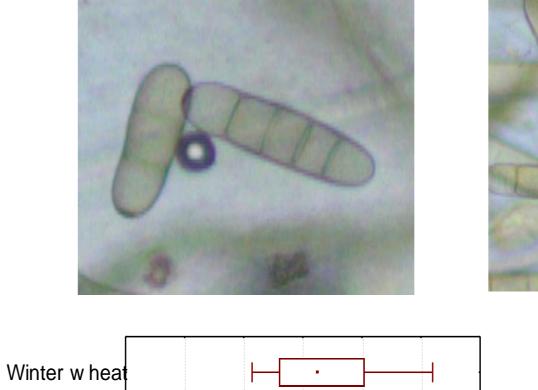
Frequency of occurrence isolates virulent to Allies, Katepwa, 6B662 was rather equal in all Pt and Ptr isolate samples. Pt isolates originated from barley were avirulent to the most part of wheat cultivars (Riley 67, Asiago, Clark Dartagnan), or their frequency was low (Satsukei 86, Hokkai 252, Komadi). However Pt isolates originated from wheat characterized by high frequency of occurrence of virulent ones. Their frequency practically not differing from frequency in samples of Ptr isolates.

2007-2009 frequency isolates has occurrence increased from 29% to 60% from the sum of *Pyrenophora* isolates (Table 1A). Basically P. originated from spring wheat cultivars (Tabl.1B).

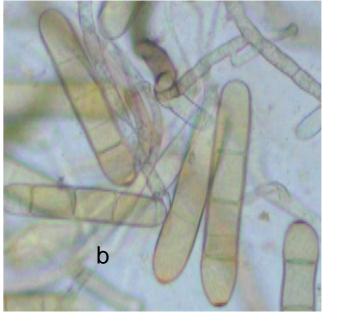
During all period of research in territory of North Caucasus P. teres was not found out.

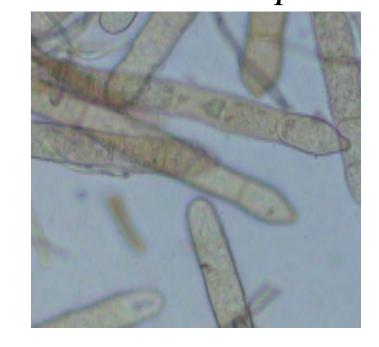
Samples of isolates Pt and Ptr originated from spring and winter wheat, and Pt from barley were compared on frequencies of occurrence isolates virulent to wheat cultivars (Table 2). These cultivars were chosen on their ability to differentiate isolates Ptr on virulence (Mikhailova et. al., 2002). Virulence was estimated on size of necrotic spots on leaf segments for 5 - 6 days after their inoculation by conidia suspension both fungi conidia/ml).

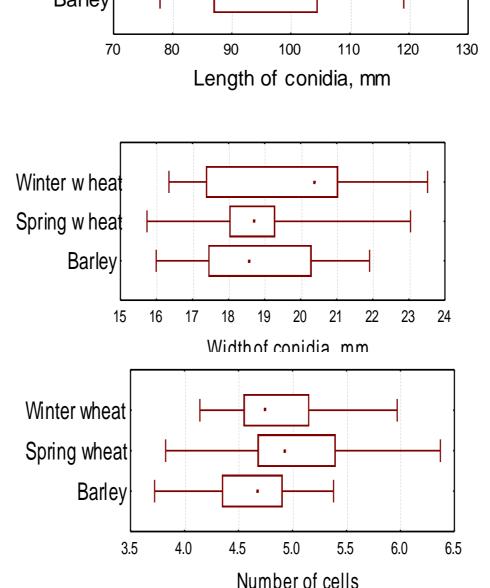
Species identification of new pathogen as Pyrenophora teres has been proved by Morphological traits and RAPD analysis. Genetic relationship between *Pyrenophora* isolates: 1-P. tritici-repentis,

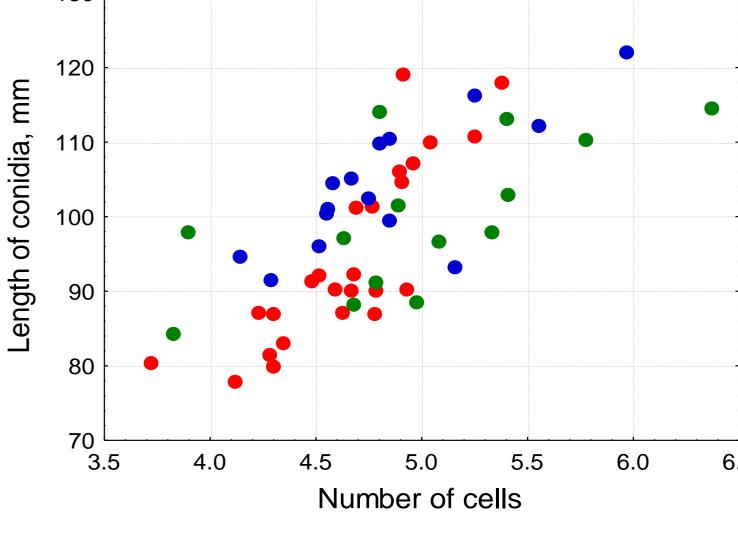

2-P. teres

Using PCR with specific primers to spot and net forms (Williams et al., 2001) all P.teres isolates were identified as P. teres f. teres

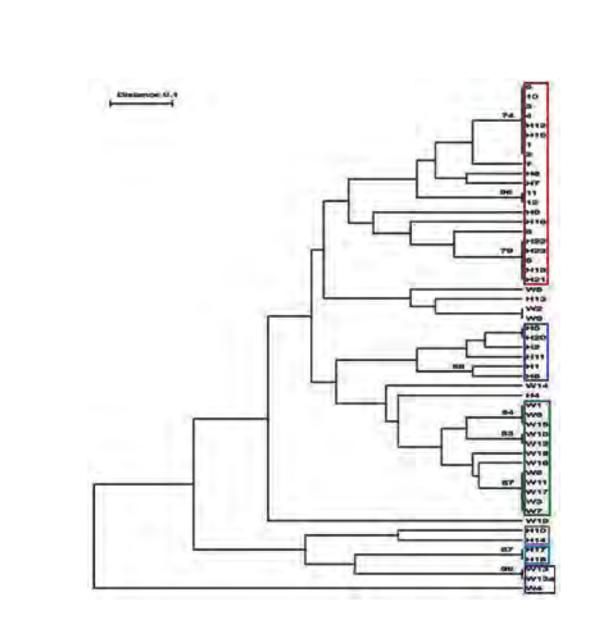



Isolates of *P. teres* f. *teres* originated from different hosts were distinguished by size of conidia. Variability of conidia originated from barley was wider than variability conidia originated from wheat.


a - P. teres from barley, b - P. teres from wheat, c-P. tritici-repentis.



Spring w heat



P. teres isolates of the were isolated from spring and winter wheat (SW, WW), and from spring barley (SB). Using RAPD and UP-PCR methods, genetic differences were found out between SW and WW P. teres f. teres populations ($F_{st} = 0.41$), WW and SB $(F_{st} = 0.21)$, and SW and SB $(F_{st} =$ 0,18) on 16 polymorphic loci. Average gene diversity over loci was higher on barley (H=0,30) and spring wheat (H=0,26), than on winter

Spring barley

Spring wheat

winter wheat

Genetic relationships between P.teres isolates, originated from winter (N pand spring wheat (W •) and barley (H • from one region (Novgorod) of North West of RF

Conclusions

- 1. There is first report of detection of *P. teres* f. teres isolates on spring and winter wheat in Russia.
- 2. P.teres f.teres isolates originated from wheat are more adaptive to wheat, than to barley.
- 3. Among the studied cultivars of wheat distinctions on resistance to P.teres and P.tritici-repentis have been revealed only on cv. Dartagnan
- 4. Conidia of "wheat" P. teres isolates are longer and have more septa than conidia of "barley" isolates.
- 5. "Barley" and "spring wheat" P. teres isolates characterized by more genetic variability than "winter wheat" ones.
- 6. Genetic differences were found out for P. teres populations originated from different hosts: barley, winter and spring wheat.

wheat (H=0,12).