

Afforestation among Scottish farmers as reflected in the Farmer Intentions Survey (2018)

Farmer Intentions Survey briefing note, March 2022

Stan Martinat and Annie McKee, Social, Economic and Geographical Sciences Group, James Hutton Institute, Aberdeen, UK

Summary

This report provides an insight into the characteristics of farmers who have afforested their land since they became the farm manager, as reported within responses to the Farmers Intention Survey, conducted in 2018 (n=2,494). Specifically, this analysis has focussed on responses to the question "Since you became involved in the management of the farm, have you changed the area of forestry?".

Three groups of farmers were thus identified from those who responded to this question (1,314 farmers): the group reporting an increase of the are of forestry (189 farmers), the group reporting no change of the area of forestry (1,102 farmers) and the group reporting a decrease of the area of forestry (23 farmers). Due to small number of farmers in the group decreasing the area of forestry, more attention is focused in this report on the groups of farmers increasing and not changing the area of forestry on their landholding. The key findings include:

- Most farmers stating that they had increased the area of forestry on their landholding can be found in Perth & Kinross (20 farmers); additional districts where at least 9 farmer respondents have increased forested land areas are: Berwickshire, Moray, Ross & Cromarty and Roxburgh. Contrarily, in 12 Scottish districts no farmers reported having increased the area of forestry (see Table 1).
- Level of education may be an indicator as to whether or not the farm manager has afforested land since they took on management. University-level educated farmers were more represented in the group already afforesting their land (51.3%) than the group reporting no change (31.2%).
- Farmers who identify themselves as a 'businessperson' were more likely to have increased the area of forestry on their landholding (36.3% farmers in comparison to 21.4% in the no change group).
- Changes in input prices, and changes in commodity prices, as well as changes in land and labour availability, are the most influential issues affecting the way that farmers manage their farms. The group of farmers increasing the area of forestry appear less likely to change their farm management given external influences or possible internal change processes.
- Statistically significant associations are identified between the recent change in the farm capital value and afforestation. Farms that decreased in capital value tend be more likely to be managed by respondents who have not changed the area of forested land in the last 5 years. These coherences need to be investigated in further depth.

Scottish Government Riaghaltas na h-Alba gov.scot

1.0 Introduction

The Scottish Government's Climate Change Plan for 2018-2032 (updated in 2020) has identified a set of objectives for the future of afforestation in Scotland: (i) to increase the contribution of forests and woodlands to Scotland's sustainable and inclusive economic growth; (ii) to improve the resilience of Scotland's forests and woodlands and increase their contribution to a healthy and high quality environment, and (iii) to increase the use of Scotland's forest and woodland resources to enable more people to improve their health, well-being and life chances. To achieve these objectives, both forestry policies and practice will be developed and implemented as part of the integrated approach presented in the Scottish Government's Forestry Strategy (2019-2029).

According to the Government's Climate Change Plan, specifically its focus on land use change, expanding the area of Scotland's forests and woodlands will contribute to reduced greenhouse gas emissions, as well as generating an important commercial natural resource, improving biodiversity, and providing further spaces for people to enjoy. During the period of 2018-2020, over 22,000 hectares of new woodland was created in Scotland and further investments to increase overall forest cover are expected. It is anticipated that forest creation will increase from the current level of 12,000 hectares per year in 2020/21 up to 18,000 hectares per year by 2024/25. There is a wide consensus among researchers that forestry and woodlands play an important role in cutting emissions and sequestering carbon (e.g., Burke et al., 2021), as well as providing multiple landscape functions (Gimona and van der Horst, 2007), including natural flood alleviation, biodiversity enhancement, and other ecosystem services. On the other hand, area-based targets for afforestation imply an expected contribution of afforestation to the net reduction of greenhouse gas emissions, yet the nature of afforestation undertaken and its geographical distribution means that there is considerable uncertainty over the eventual emission reductions outcomes (Matthews et al., 2020).

There is controversy therefore surrounding the conversion of agricultural land into forestry (Sandberg and Jakobsson, 2018) and criticism arises regarding the planting of trees on productive land. This factor is perceived as a potential threat to farming livelihoods. Agricultural leaders have asserted that land acquisitions for forestry raise land prices above what farmers can afford to pay, and that they also limit tenancy availability and opportunities for new entrants into the sector (Carruth, 2021; Cox, 2022). There are also concerns articulated that afforestation of agricultural land will impact on the scale of farming activities and food production, as well as potentially lead to faster land abandonment (Mackie, 2021). On the other hand, the Glensaugh Carbon Positive Farming Initiative can be seen as an example of integrating woodland expansion on a livestock hill farm. Ideally sharing expertise in agroforestry and practical techniques of climate-positive farming could support implementation on other Scottish farms.

Increasing of the area of forested land also aligns with the Scottish Government's Vision for Agriculture (Scottish Government, 2022). This document highlights that land management in Scotland will change as we tackle the twin biodiversity and climate crises which will present challenges and opportunities for farmers and crofters, building on their traditional leadership role in land management and stewardship.

Undoubtedly, the question of afforestation requires attention by the farming sector. Based on the above-mentioned arguments, we are interested how the issue of afforestation is reflected in the results of the Farmer Intentions Survey in Scotland (2018).

Earlier research has identified the key characteristics that affect likeliness to afforest among farmers. These results indicate that there is more support for increasing the area of forested land among those farmers who are already operating forestry, who report other types of non-farming activities, are

involved in environmental schemes, are highly educated, have a relatively high number of employees, and are relatively recent entrants to landholdings (Hopkins et al., 2017).

Building on this previous research, this report therefore presents new results providing an overview of the locations of farm management increasing areas of forestry (3.1), then considering the differences in gender, age, education, and length of experience of farmers who are or are not increasing forested land (3.2). The next section (3.3) focuses on the self-identification of farmers, and the factors affecting how the farm has been managed in the last 5 years (3.4). Finally, differences in farm economics among farmers who are changing the area of forestry (3.5) are illustrated.

2.0 Methodology and data

A telephone-based survey of Scottish farmers, crofters and smallholders was conducted over the summer of 2018. A spatially representative sample of 11,000 businesses was selected using information from the Scottish Government's June Agricultural Census (JAC) stratified by region, business size and farm type. The JAC sampling framework was the most appropriate as it gave national coverage and detailed information on agricultural activity, and it meant that background information requirements from farmers and crofters were minimised. As the JAC is conducted at an agricultural holding level the data was aggregated (where appropriate) to business level, in order to ensure the sampling framework was as representative of Scottish agriculture as possible. A total of 2,494 farmers, crofters and smallholders engaged with the survey.

As the main area of interest in this report was to better understand the current state of afforestation among Scottish farmers as reflected in the Farmers Intention Survey (2018), we have focussed on the analysis of responses to the question: "Since you became involved in the management of the farm, have you changed the area of forestry?". Altogether, 28 questions were analysed from the Farmers Intention Survey for the purpose of this report.

To better understand individual specificities of the group of farmers who reported an increase in the area of forestry (the INCREASE group, 189 farmers), we compared this group with the group of farmers who decreased the area of forestry (the DECREASE group, 23 farmers) and with the group of farmers who reported no change concerning forestry (the NO CHANGE group, 1,102 farmers). Pearson's chi-square test was used to test differences among three groups. In one case, the one-way analysis of variance (ANOVA) was applied.

We are aware that the group of farmers reporting a decrease in the area of forestry in the last 5 years is relatively small (23 farmers), however, we believe that even such a small group is relevant to be compared with other groups and reasonable findings can be revealed. Aggregated data from the Farmers Intention Survey (2018) used in this report are to be find in Annex 1.

3.0 Results

3.1 General perspective

Out of 2,494 farmers surveyed in the Farmer Intentions Survey (2018), only 189 Scottish farmers (7.6% from the total surveyed) declared that since they became involved in farm management the area of forestry on their landholding had increased. Contrarily, 23 farmers (0.9% of the total) decreased the

area of forestry. The vast majority of farmers involved in the survey report no change in the extent of the forestry (44.2%) or did not provide any information about this issue (47.3%).

If we focus on those farmers who increased their forestry land (189 farmers) and their regional distribution, we find at least one farmer in 43 districts (out of 55 Scottish districts). **The most frequently reported increases of forestry among farmers can be seen in Perth & Kinross (20 farmers). In Berwickshire, Moray, Ross & Cromarty, and Roxburgh between 7-10 farmers per region reported an increase.** On the other hand, in 12 districts, no farmers reported such an increase. Please see Table 1 for districts where the most and the least farmers reported an increase of forestry on their landholding.

Table 1: Scottish districts with the highest (7 and more) and lowest (1 and less) number of	farmers
who reportedly increased the area of forestry	

District	Number of farmers
Perth & Kinross	20
Berwickshire	10
Moray, Ross & Cromarty, and Roxburgh	9
Gordon	8
East Lothian, Lochaber, and Stirling	7
City of Aberdeen, City of Dundee, Cumbernauld & Kilsyth, Dumbarton,	1
Falkirk, Inverclyde, Monklands, Nairn, Orkney, and Renfrew	
Strathkelvin, Motherwell, Kirkcaldy, Hamilton, City of Glasgow, City of	0
Edinburgh, Eastwood, East Kilbride, Dunfermline, Clydesdale,	
Clackmannan, Bearsden and Milngavie	

3.2 Differences in gender, age, education, and length of experience

If we initially focus on gender of the surveyed farmers who reported an increase in the area of forestry (the INCREASE group), from the analysis of frequencies in individual groups of farmers we can see that male farmers are more frequently represented (see Table 2). On the other hand, more than one fifth of the INCREASE group is formed by female farmers (20.6%), while for both the NO CHANGE group and the DECREASE group this value is lower, just around 13%. Relative representation of female farmers is higher in the group that already afforested the land than in the group that didn't report any change concerning this issue. However, no significant differences were found when three groups of farmers were tested by Pearson's chi-square test (1.91920, df=2, p=.383046). Gender is therefore not a predictor of whether or not a farmer is likely to increase afforestation on their landholding.

Table 2: Gender of farmers represented in three studied group

				-				
Gender of farmers	Decrease	group	(n=23	No	change	group	Increase	group
	farms)			(n=:	1,102 farr	ns)	(n=189 farms)	
Females	13%			13%	/ D		20.6%	
Males	87%			87%	/ D		79.4%	

With regard to the age structure of the respondents, a share of 54.6% of farmers older than 55 years can be found in the INCREASE group. In case of the NO CHANGE group this value is higher (63.4%) and again in the DECREASE group (74%). When interpreting this finding, we take into consideration that the DECREASE group is formed of only 23 farmers. Differences among the INCREASE and NO CHANGE group were found significant by testing by Pearson's chi-square test (13.8259, df=6, p=.031642). Nonetheless, it can be surmised that the NO CHANGE group seems to be slightly older than the INCREASE group. We can say that the age of the respondents an indicator of likelihood to increase

afforestation. Looking in detail at the age structure of the NO CHANGE group and the INCREASE group (please see Figure 1), we see that the INCREASE group of farmers is formed by 10.1% of the youngest group of farmers (35 years and under), while in the NO CHANGE group this is just 4.6%. The age group 36-40 years is also more represented in the INCREASE group. On the other hand, all age categories of farmers above 55 years are more represented in the NO CHANGE group. This is most visible in the case of the oldest age group of farmers (75 years and above), where the NO change group is represented by around one tenth of farmers. It seems that the younger age groups of farmers (i.e. aged 55 years or below) are more prominent in the group of farmers that had already afforested their landholding in comparison to the group that did not make any changes.

Fig. 1. Age structure of the NO CHANGE group (left) and the INCREASE group (right)

Note: DECREASE group (n=23 farms), NO CHANGE group (n=1,102 farms) and INCREASE group (n=189 farms)

The finding demonstrating the relatively younger age structure of the INCREASE group is supported by comparing the length of experience with farm management. The farmers in the INCREASE group on average report experience of 25 years, in both the NO CHANGE and DECREASE group we see longer reported average experience (28 years, 34 years respectively). The one-way analysis of variance (ANOVA) was applied with the result (F = 4.05191118210346, p = 0.0176318329883112) confirming the difference. A post hoc test confirmed (p < 0,05) that the INCREASE group differs from the NO CHANGE group. To sum up, it is likely that **farmers with shorter average experience are more likely to afforest their landholding**.

We can see an interesting picture when the three studied groups of farmers are compared according to their level of reported highest achieved education. The differences between the studied groups of farmers were confirmed by Pearson chi-square test (29.6967, df=4, p=.000006). In the INCREASE group more than half (51.3%) of farmers have a University-level education (see Figure 2), whilst in the case of the DECREASE group this is just around one third. On the contrary, differences can be seen in the case of college education that is the most frequent in the DECREASE group (48%), but again, this might be affected by a very small number of farmers in this group. However, our findings indicate that level of education may be an indicator of whether or not the farm manager has afforested land since they took on management.

Fig. 2: Changing level of education among the DECREASE, NO CHANGE and INCREASE groups of farmers

Note: DECREASE group (n=23 farms), NO CHANGE group (n=1,102 farms) and INCREASE group (n=189 farms)

3.3 Differences in the self-identification of farmers

While more than one third of farmers within the INCREASE group identify themselves as a 'businessperson' (36.5%, 69 farmers), it is less in the NO CHANGE group (21%, 231 farmers) and even less in the DECREASE group (see Figure 3). Pearson's chi-square test confirmed significant differences among the groups (21.6138, df=2, p=.000020). It also seems that hobbyists are more represented among the DECREASE group of farmers (9%) than in the INCREASE group (3%) (a similar finding is true for contractors). This finding is affected by a small number of farmers in the DECREASE group and the difference was not found to be statistically significant by using Pearson's chi-square test (3.76353, df=2, p=.152321 for hobbyists, 2.28543, df=2, p=.318953 for contractors and 2.79456, df=2, p=.247268 for smallholders). However, we clearly see the differences in self-identification among the studied groups of farmers. Farmers identifying themselves as a businessperson were more likely to have increased the area of forestry on their landholding.

Fig. 3: How the surveyed groups of farmers identify themselves (replies in %)

Note: DECREASE group (n=23 farms), NO CHANGE group (n=1,102 farms) and INCREASE group (n=189 farms)

3.4 Differences among the issues affecting farm management in the last 5 years

Finally, this analysis investigated the differences among three studied groups of farmers in the issues affecting their farm management in the last 5 years. 11 key issues included in the Farmers Intention Survey was compared for the DECREASE, NO CHANGE and INCREASE groups as follows: i) changes to CAP payments; ii) changes in input prices; iii) changes in commodity prices; iv) changes in labour availability; v) land availability; vi) changes in exchange rates; vii) changes in climate; viii) changes to regulations; ix) technological change; x) planning for succession; and xi) changes in internet access.

The differences between three groups of farmers were tested again by Pearson's chi-square test and significant differences were confirmed for i) changes to CAP payments (20.7222, df=4, p=.000359); ii) changes in input prices (12.5175, df=4, p=.013890); iv) changes in labour availability (12.5447, df=4, p=.013728); v) land availability (21.3535, df=4, p=.000269); vi) change in exchange rates (14.7267, df=4, p=.005303); viii) change to regulations (17.0187, df=4, p=.001917); ix) technological change (17.9757, df=4, p=.001248); and xi) internet access (15.7728, df=4, p=.003340). On the other hand, for the factors vii) changes in climate (3.76237, df=4, p=.439120); and x) planning for succession (8.16633, df=4, p=.085672), the differences among the studied groups were not found to be significant.

Changes in input prices and changes in commodity prices are the most influential issues that affect the way that farmers have managed their farms in the last 5 years, and are perceived as important among all the studied farmer groups (see Figures 4-15). However, farmers in the INCREASE group (25%) and the NO CHANGE (36%) groups claim that are less affected by changes in input prices than farmers in the DECREASE group (13%). Changes in labour availability and land availability are perceived more diversely among mentioned issues but were also found to be highly relevant. About a half of farmers in the DECREASE group report that labour and land availability slightly or significantly affected their farm management in the last 5 years. Additionally, in the DECREASE group of farmers, the impact of technological change and changes in internet access are highlighted. The INCREASE group appears less likely to change their farm management given external influences or possible internal change processes. This is different to the NO CHANGE and DECREASE groups that illustrated more variability in their farm management response in contexts of these key factors. It was confirmed that the farmers who increased the area of forestry were less likely to have perceived land and labour availability as an issue for the way in which they managed their farms in the last 5 years.

Fig. 4-15: In the last 5 years, have any of the following changed the way you manage your farm? Differences among the DECREASE, NO CHANGE and INCREASE groups of farmers.

INCREASE

3.5 Differences in farm economics

When asked about what proportion of household income comes from the farm, 70% of the farmers from the DECREASE group (16 farmers) reported that at least 50 % of their income is from the farm. On the other hand, in the NO CHANGE and INCREASE group about 55% of farmers stated that at least 50 % of their income is from the farm. **Therefore, the farmers who decreased afforested land may be economically more dependent on their farms (and less on other income).** However, the differences among three studied groups of farmers were not confirmed by Pearson's chi-square test (5.79432, df=8, p=.670259). We have to be clear here that this finding is affected by the small number of farms that fall into the DECREASE group (23 farms).

Increase in the capital value of the farm in the last 5 years was reported by at least 60% of the farmers within both the DECREASE and INCREASE groups; in case of the NO CHANGE group this value was slightly lower at 53%. On the other hand, only 3% of farms in the INCREASE group reported a decrease in the capital value of the farm, in comparison to 6% of the NO CHANGE group. This finding signals that economically less successful farms (i.e. those that decreased in capital value) tend to be more likely to be managed by the respondents who have not changed the area of forested land in the last 5 years, in comparison to those farmers who increased the area of forested land. The differences among three studied groups of farmers were confirmed by Pearson's chi-square test (13.1018, df=4, p=.010789). These coherences need to be investigated in further depth.

If we focus on the answers to the question "Taking all your sources of income into account, does this farm usually make a profit?", more farmers from the INCREASE group report a profit of at least £25,000 (43.9% in the INCREASE group compared to 34.7% in the NO CHANGE group – see Table 3). However, the differences between the groups of farmers were not confirmed by Pearson's chi-square test (8.29080, df=6, p=.217563).

	DECREASE group	NO CHANGE group	INCREASE group
a profit more than £25,000	43.5%	34.7%	43.9%
a profit less than £25,000	30.4%	34.8%	30.2%

Table 3: Share of farms making a profit more than £25,000 or a profit less than £25,000

Note: DECREASE group (n=23 farms), NO CHANGE group (n=1,102 farms) and INCREASE group (n=189 farms)

Finally, if we focus on the evaluation of the current economic position and economic prospects in individual groups of farmers (see Table 4), the picture becomes more complicated. It is indeed notable that none of farmers in the DECREASE group did not evaluate their current economic position as 'bad' or 'excellent', but instead more than 95% of farmers in this group declared their position as 'good' or fair (although this might be affected by a small number of farmers in this group). However, the differences among three studied groups of farmers were not confirmed by Pearson's chi-square test (6.51583, df=8, p=.589653 for the current economic position and 7.94537, df=8, p=.438825 for economic prospects), which suggests that farmer perceptions of the current and prospect economic position seems not to be an indicator of likelihood to afforest their land.

45% of farmers in the INCREASE group report good or excellent current economic prospects, which is slightly higher value than in the case of the NO CHANGE group (40%). On the contrary, 9.9% of farmers in the NO CHANGE group stated that their current economic position is 'bad' or 'poor', with an even higher share found in the INCREASE group when evaluating future economic prospects (bad and poor altogether, 17.6%). Generally, we can say that the future prospects of the farmers in all studied groups

seem to be more negatively evaluated than their current economic position. Slightly more farmers in the group that increased the area of forestry on their landholding evaluate the current economic position as good and excellent. However, this finding was not confirmed as significant when tested by Pearson's chi-square test. As before, these coherences need to be investigated in further depth.

Evaluation	DECREASE group		NO CHANGE group		INCREASE group	
	Current (%)	Prospects	Current (%)	Prospects	Current (%)	Prospects
		(%)		(%)		(%)
Bad	0.0	4.3	2.5	3.8	1.6	5.8
Poor	4.3	4.3	7.4	11.7	5.3	11.6
Fair	56.5	47.8	48.1	43.3	46.6	39.2
Good	39.1	21.7	33.7	27.2	36.0	25.3
Excellent	0.0	13.0	6.4	4.5	9.0	6.3

Table 4: How would you describe the current economic position and economic prospects of your household?

Note: DECREASE group (n=23 farms), NO CHANGE group (n=1,102 farms) and INCREASE group (n=189 farms)

4.0 Conclusion

In this report, we have focused on enhancing our understanding of the characteristics of farmers who have, according to their responses to the Farmers Intention Survey (2018), afforested their land since they became the farm manager. The focal point of this analysis was the question "Since you became involved in the management of the farm, have you changed the area of forestry?". To enable a more structured view on the issue, three groups of farmers were defined: the group reporting an increase of the area of forestry (189 farmers), the group reporting no change of the area of forestry (1,102 farmers) and the group reporting a decrease of the area of forestry (23 farmers).

We found that most farmers who reported that they had increased the area of forestry on their landholding were located in Perth & Kinross (20 farmers); additional districts where at least 9 farmer respondents have increased forested land areas are: Berwickshire, Moray, Ross & Cromarty and Roxburgh. Contrarily, in 12 Scottish districts no farmers reported having increased the area of forestry.

Level of education may be an indicator as to whether or not the farm manager has afforested land since they took on management. We ascertained that University-level educated farmers were more represented in the group already afforesting their land than in the group where no changes concerning afforestation were made. Among other notable findings is that farmers who identify themselves as a 'businessperson' were more likely to have increased the area of forestry on their landholding.

We detected that changes in input prices, and changes in commodity prices, together changes with land and labour availability are the most influential issues affecting farm management. The group of farmers increasing the area of forestry appear less likely to change their farm management given external influences or possible internal change processes. It was also confirmed that the farmers who increased the area of forestry less likely to have perceived land and labour availability as an issue for the way that they have managed their farms in the last 5 years. The results also indicate that farms that decreased in capital value tend be least likely to have changed or increased the forested area on their land.

References

Burke, T., Rowland, C., Whyatt, J. D., Blackburn, G. A., & Abbatt, J. (2021). Achieving national scale targets for carbon sequestration through afforestation: Geospatial assessment of feasibility and policy implications. *Environmental Science & Policy*, *124*, 279-292.

Cox, H. (2022). Carbon capture pitches smallholders against big business. Financial Times online. Available online: <u>https://www.ft.com/content/2ae63752-cefd-45b9-9282-a97584cc2cb2?accessToken=zwAAAX-nKXFfkc8q5jdSzv1FudOSgql1hMwssg.MEYCIQCXY9XBuGftJ7gejgfaAMDvoJjy-AwCUDI-</u>

Cd9IRUgCrAlhAJ1ZqAx3shK0injTwcLSoIsdvLR9Cmi6C6g1fe1QJVZA&sharetype=gift?token=54210e37-98f5-4f05-8804-6e16b75ff014 [Last updated: 11.3.22; Accessed: 24.3.22].

Gimona, A., & van der Horst, D. (2007). Mapping hotspots of multiple landscape functions: a case study on farmland afforestation in Scotland. *Landscape Ecology*, *22*(8), 1255-1264.

Hopkins, J., Sutherland, L. A., Ehlers, M. H., Matthews, K., Barnes, A., & Toma, L. (2017). Scottish farmers' intentions to afforest land in the context of farm diversification. *Forest Policy and Economics*, *78*, 122-132.

Mackie, G. (2021). Leading Scottish farmer sounds warning over planting trees on productive farmland. *The Press* and *Journal. Evening Express*, 14th May, 2021 <u>Leading Scottish farmer sounds warning over planting trees on productive farmland (pressandjournal.co.uk)</u>

Matthews, K. B., Wardell-Johnson, D., Miller, D., Fitton, N., Jones, E., Bathgate, S., Randle, T., Matthews, R., Smith P. & Perks, M. (2020). Not seeing the carbon for the trees? Why area-based targets for establishing new woodlands can limit or underplay their climate change mitigation benefits. *Land Use Policy*, *97*, 104690.

Carruth, B. (2021). Union Calls for Tighter Tree Planting Safeguards on Scotland's Productive Farmland. National Farmers' Union Scotland. Available online: <u>https://www.nfus.org.uk/news/news/union-calls-for-tighter-tree-planting-safeguards-on-scotlands-productive-farmland</u> [Last updated: 14.12.22; Accessed: 24.3.22].

Sandberg, M., & Jakobsson, S. (2018). Trees are all around us: Farmers' management of wood pastures in the light of a controversial policy. *Journal of Environmental Management*, *212*, 228-235.

Scottish Government (2019). Scotland's Forestry Strategy 2019-2029. Environment and Forestry Directorate of Scottish Government, 60 p. Supporting documents - Scotland's Forestry Strategy 2019–2029 - gov.scot (www.gov.scot)

Scottish Government (2020). *Climate change plan: Securing a green recovery on a path to net zero: climate change plan 2018–2032 – update.* Energy and Climate Change Directorate of Scottish Government, 255 p. <u>Supporting documents - Securing a green recovery on a path to net zero: climate change plan 2018–2032 - update - gov.scot (www.gov.scot)</u>

Scottish Government (2022). The next step in delivering our vision for Scotland as a leader in sustainable and regenerative farming. Our vision for Scottish Agriculture. Agriculture and Rural Economy Directorate of Scottish Government, 11 p. <u>Supporting documents - Sustainable and regenerative farming - next steps: statement - gov.scot (www.gov.scot)</u>

Acknowledgements

This work was funded by the Rural & Environment Science & Analytical Services Division of the Scottish Government, as part of the Strategic Research Programme 2016-2022 (RD2.4.2). The opinions expressed in this report do not necessarily reflect those of the Scottish Government or RESAS. We wish to thank participants in the telephone survey. Any errors in analysis or interpretation are those of the authors.

For further information, please contact: Stan Martinat (<u>stanislav.martinat@hutton.ac.uk</u>)

Annex 1: Summary of the question analysed in the report for the DECREASE group, the NO CHANGE group and the INCREASE group.

Code	Question	Decrease group (n=23	No change group	Increase group
		farms)	(n=1,102 farms)	(n=189 farms)
Q4	Age	74% of the farms led	63.4% of the farms	54.6% of the
		by farmer older than	led by farmer older	farms led by
		55 years	than 55 years	farmer older
				than 55 years
			4.6% 35 years and	
			under	10.1% years 35
			3.4% 36-40 years	and under
			4.9% 41-44 years	5.3% 36-40
			23.2% 45-54 years	years
			29.5% 55-64 years	3.2% 41-44
			24.1% 65-74 years	years
			9.8% 75 years and	25% 45-54
			over	years
				28.2% 55-64
				years
				21.3% 05-74
				years
				0.9% /5 years
05	Gender	12% of the farms led	12.3% of the farms	20.6% of the
Q.5	Gender	by females	led by females	farms led by
		87% of the farms led	86.6% of the farms	fomalos
		by males	led by males	79 1% of the
		by males	led by males	farms led by
				males
06	Education	26% of the farms led	30.6% with school	18 9% with
40	Luucation	by farmer with school	education	school
		education	35.8% with college	education
		48% with college	education	29.7% with
		education	31.2% with	college
		26% of the farms led	university education	education
		by farmer with	,	51.3% with
		university education		university
				education
Q8_1	Length of	On average 33.7 years	On average 28.1	On average 24.6
	involvement in	of involvement in	years of involvement	years of
	farm	farm management	in farm management	involvement in
	management			farm
				management
Q9A_1	Area of	On average 737.3	On average 497	On average
	agricultural land	hectares of	hectares of	1,637.9 hectares
	managed by the	agricultural land	agricultural land	of agricultural
	tarm			land
Q11_01	Do you consider	74% consider	69.1% consider	72% consider
	yourself to be a	themselves as a	themselves as a	themselves as a
	tarmer?	tarmer	tarmer	tarmer
Q11_03	Do you consider	8.7% consider	5.9% consider	2.6% consider
	yourself to be a	themselves as a	themselves as a	themselves as a
	hobbyist?	hobbyist	hobbyist	hobbyist

Q11_05	Do you consider	13% consider	21.4% consider	36.5% consider
	yourself to be a	themselves as a	themselves as a	themselves as a
	businessperson?	businessperson	businessperson	businessperson
Q11_06	Do you consider	8.7% consider	5.4% consider	3.2% consider
	yourself to be a	themselves as a	themselves as a	themselves as a
	contractor?	contractor	contractor	contractor
Q11_04	Do you consider	Nobody considers	7.8% consider	5.8% consider
	yourself to be a	themselves as a	themselves as a	themselves as a
	smallholder?	smallholder	smallholder	smallholder
Q12	What percentage	48% of the farmers	42.3% of the farmers	40.2% of the
	of your	claim that 75 and	claim that 75 and	farmers claim
	household	more % of their	more % of their	that 75 and
	income comes	income is from the	income is from the	more % of their
	from the farm?	farm	farm	income is from
		70% of the farmers 50	54.7% of the farmers	the farm
		and more % of their	50 and more % of	54.5% of the
		income is from the	their income is from	farmers 50 and
		farm	the farm	more % of their
				income is from
				the farm
Q20	In the last 5	61% increased	53% increased	63.5% increased
	years, has the	21.7% stayed the	26.8% stayed the	16.4% stayed
	capital value of	same	same	the same
	your farm?	8.7% decreased	6% decreased	3.2% decreased
Q23	Taking all your	91.3 % yes	79.9 % yes	82.5 % yes
	sources of			
	income into			
	account, do you			
	aim to make a			
	profit from this			
	farm?			
Q24	Taking all your	43.5% a profit more	34.7% a profit more	43.9% a profit
	sources of	than £25,000	than £25,000	more than
	income into	30.4% a profit less	34.8% a profit less	£25,000
	account, does	than £25,000	than £25,000	30.2% a profit
	this farm usually			less than
	make a profit?			£25,000
Q28	Taking all of your	0.0% bad	2.5% bad	1.6% bad
	income sources	4.3% poor	7.4% poor	5.3% poor
	into account,	56.5% fair	48.1% fair	46.6% fair
	how would you	39.1% good	33.7% good	36% good
	describe the	0.0% bad	6.4% excellent	9.0% excellent
	current economic			
	position of your			
	household?			
Q29	Taking all of your	4.3% bad	3.8% bad	5.8% bad
	income sources	4.3% poor	11.7% poor	11.6% poor
	into account,	47.8% fair	43.3% fair	39.2% fair
	how would you	21.7% good	27.2% good	25.3% good
	describe the	13% excellent	4.5% excellent	6.3% excellent
	economic			

	prospects for your household over the next five years?			
Q35_1	In the last 5 years, have any of the following changed the way you manage your farm? Changes to CAP payments	30.4% No 39.1% Slightly 26.1% Significantly	52% No 24.2% Slightly 13.6% Significantly	35.4% No 28.6% Slightly 20.6% Significantly
Q35_2	In the last 5 years, have any of the following changed the way you manage your farm? Changes in input prices	13% No 47.8% Slightly 30.4% Significantly	35.3% No 29.1% Slightly 26% Significantly	25.4% No 36% Slightly 25.4% Significantly
Q35_3	In the last 5 years, have any of the following changed the way you manage your farm? Changes in commodity prices	30.4% No 39.1% Slightly 26.1% Significantly	39.2% No 30.7% Slightly 20.6% Significantly	36% No 30.2% Slightly 20.6% Significantly
Q35_4	In the last 5 years, have any of the following changed the way you manage your farm? Changes in labour availability	43.5% No 26.1% Slightly 26.1% Significantly	64.4% No 15.6% Slightly 10.3% Significantly	54% No 19.0% Slightly 13.8% Significantly
Q35_5	In the last 5 years, have any of the following changed the way you manage your farm? Land availability	47.8% No 43.5% Slightly 4.3% Significantly	68.4% No 12.9% Slightly 8.5% Significantly	57.7% No 17.5% Slightly 11.1% Significantly
Q35_6	In the last 5 years, have any of the following changed the way you manage your <%~S1Xpr%>? Changes in exchange rates	39.1% No 34.7% Slightly 17.4% Significantly	56.2% No 24.5% Slightly 8.7% Significantly	43.4% No 28% Slightly 14.3% Significantly

Q35_7	In the last 5 years, have any of the following changed the way you manage your farm? Changes in Climate	39.1% No 30.4% Slightly 26.1% Significantly	40.7% No 26.1% Slightly 23.7% Significantly	32.8% No 24.9% Slightly 28% Significantly
Q35_8	In the last 5 years, have any of the following changed the way you manage your farm? Changes to regulations	30.4% No 39.1% Slightly 26.1% Significantly	42.7% No 30% Slightly 17.3% Significantly	27.5% No 34.4% Slightly 24.9% Significantly
Q35_9	In the last 5 years, have any of the following changed the way you manage your farm? Technological change	21.7% No 60.9% Slightly 8.7% Significantly	48.1% No 29.1% Slightly 13.2% Significantly	38.6% No 29.1% Slightly 19% Significantly
Q35_10	In the last 5 years, have any of the following changed the way you manage your farm? Planning for succession	52.2% No 26.1% Slightly 17.4% Significantly	65.7% No 15% Slightly 9.6% Significantly	55% No 18% Slightly 12.7% Significantly
Q35_11	In the last 5 years, have any of the following changed the way you manage your farm? Changes in internet access	30.4% No 47.8% Slightly 17.4% Significantly	57.9% No 18.8% Slightly 13.7% Significantly	49.7% No 19% Slightly 18% Significantly