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Scotland’s peat 
 Peat bogs cover ~22% of Scotland, contain 

60% of UK peat and ~3000 million tons of C 

 Different characteristics (pH, water content, 
bulk density) 

 Different vegetation/land use 

 Different depths 

 Condition varies greatly 

 Accurate depth mapping not achieved 

 Difficult to assess overall C 
sequestration/storage potential 

2 



Peat survey data 
 Multiple peat surveys (1964-

1968) 

 More recent work focussed on 
specific bogs or types of bog 

 Data from 277 peat bogs used 

 Mean depths along transects 

 Number of sample points varied 
with size of bog 

 Good distribution between 
lowland, raised and upland peat 
bogs (blanket & basin peats) 
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The big assumption 
 That using sufficient mean depth values from peat bogs 

across Scotland is: 

 Going to provide sufficient depth variation for modelling 

 Qualitatively equivalent to using individual depth values 

 The assumption is tested against peat depth sampling 
data from two surveys (Forsinard and NSIS) 

4 National Soil Inventory 
of Scotland (NSIS 1) 

Forsinard sample data 



Ancillary datasets 
 Topography (elevation, slope, aspect, curvature, flow integration) 

 Soil map data (percentage of nine broad classes within map units) 

 Vegetation (CORINE, 10 broad classes) 

 Climate (monthly mean temperature & rainfall) 

 Geology (19 broad classes derived from soil map of Scotland) 
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Data ‘strip’ generation 
 Ancillary datasets used to produce strips of 

data 

 Each strip is 425km x 100m 

 Contains 4250 lines with 80 parameters 

 6927 strips produced 

 Speeds up data access for model 
training/testing 

 Many small (1.5 MB) files easier to handle than 
one big (10.4 GB) file 

 Can be used to rapidly generate maps using 
trained models 
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Neural network training 
 Backpropagation NN used 

 10-fold cross validation 

 Each ‘fold’ has 10 networks for consensus 

 NN architecture 80:10:10:1 

 Trained for 100k steps, tested every 1k 
and best taken 

 Data normalisation within range [0.1, 0.9] 

 Depth values distribution-normalised by 
using square root 
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Stratification of data 
 Fuzzy k-mean clustering of training 

data 

 10 clusters, based on input 
parameters 

 Several factors influence stratification 

 Vegetation 

 Temperature 

 Rainfall 

 Slope 

 Assessed with & without 
stratification 
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Mapping – with stratification 
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 Predicted depth for all map 
units where peat > 0% 

 Range 0 - 9 metres predicted 

 Issues with stratification 
boundaries 



Mapping – without stratification 

 Predicted depth for all map 
units where peat > 0% 

 Range 0 - 8 metres predicted 

 No issues with stratification 
boundaries 

 Overall agreement with 
stratification map 
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Results (I) 
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Normalised (SQRT) Stratification No stratification 

RSQ 0.754 0.720 

RMSE 1.37 1.46 m 

MAE 0.98 1.07 m 

RPD* 2.01 1.93 

RPIQ** 2.76 2.57 

Linear scale Stratification No stratification 

RSQ 0.730 0.685 

RMSE 1.39 1.52 m 

MAE 1.04 1.18 m 

RPD* 1.90 1.78 

RPIQ** 2.53 2.31 
*RPD = std. dev. of observations / std. err. in predictions (redundant with RSQ) 
**RPIQ = (Q75% - Q25%) / std. err. in predictions (Bellon-Maurel et al. 2010, TrAC Trends in 
Analytical Chemistry) 
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