Scenario modelling of ecosystem service provision with a new soil model (MOSES)

Matt Aitkenhead Joanna Clark

The MOSES model

- Modelling Of Soil Ecosystem Services
 - Simulates multiple processes
 - Allows quantification of ecosystem services
 - Allows scenario simulation of land use/climate change
- Process-based point soil profile model
- 1 minute timestep, 1 cm layer
- Outputs saved every 12 hours (optional)

MOSES interface

	Matric potential	NO content
	Total potential	NO3 content
Bulk density	Hydraulic conductivity	NH4 content
Porosity	Saturation	
Sand content	Soil air humidity	
Silt content	pН	
Clay content	N2 content	
Organic matter content	N20 content	

Previous validation work

 Aitkenhead, M.J., Albanito, F., Jones, M.B., 2011. Development and testing of a process-based soil model (MOSES) for ecosystem services.
Ecological Modelling 222, 3795-3810.

 Aitkenhead, M.J., 2011. Exploring potential contributions of soil microbes to Martian terraforming through soil simulation. CAREX Conference on Life in Extreme Environments, Dublin, October 2011.

Modelling ecosystem services

- All model parameters automatically output
- Subroutines for integrating selected parameters
 - C sequestration
 - Total void space (not implemented)
 - Water storage
 - Microbial mass x activity (summed over all functional groups) (probably a function, not a service)
- Allows 'bottom to top' analysis of model predictions
- Scope for additional ES implementations in future

Experimental design

- Moor House ECN site, 57° 7′ N, 2° 4′ W
- 565m elevation, sphagnum peat bog
- Environmental conditions monitored 1991-2003
- Soil matric potential measured
- Clark et al., 2006. Environ. Sci. Technol. 40, 1776-1783
- MOSES model simulated drought conditions and other environmental factors
- 5 scenarios of land cover change from 1st Jan 1991
 - Not always plausible considering the conditions!

Scenarios explored (I)

- Scenario 1 no change (peatland vegetation)
- Scenario 2 good rough grazing
- Scenario 3 heather moorland
- Scenario 4 coniferous forest
- Scenario 5 deciduous forest
- In each scenario, vegetation is 'planted' on Jan 1st 1991
- Vegetation submodel controls several growth, littering, ground cover and rooting parameters (parameterised from literature)

Soil matric potential

Soil matric potential (annual mean)

Scenarios explored (II)

- Scenario 1 no change (peatland vegetation)
- Scenario 2 good rough grazing
- Scenario 3 heather moorland
- Scenario 4 coniferous forest
- Scenario 5 deciduous forest
- In each scenario, vegetation is 'planted' on Jan 1st 1991
- No droughting, used rainfall pattern from 1991

Emissions (methane, kg/ha)

Emissions (total C, kg/ha)

Kg emitted

Ecosystem services - changes

	S1	S2	S3	S4	S5
C sequestration		•	•		
Water storage		➡		\Rightarrow	-
Microbial					

Decreasing rapidly
Decreasing slowly
No change
Increasing slowly
Increasing rapidly

Conclusions

- MOSES can be used to model soil at a range of levels:
 - Processes/parameters
 - Functions
 - Ecosystem services
- Incorporates a wide range of processes/parameters (and is designed to be extendable)
- Useful for scenario modelling
- If anyone would like a postdoc and doesn't need paying, I have 13,000 lines of code that need cleaned up and worked on...