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• A unique 105-year record of river
temperature in North-East Scotland is
presented.

• River temperature increased mostly
after 1961 (0.2 K per decade).

• Long-term trends are explained by in-
creasing air temperature.

• Less snow is accumulated in winter and
snow melts earlier in spring.

• Citizen science filled a knowledge gap
in long-term assessment of river
temperature.
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Salmonid species are highly sensitive to river water temperature. Although long-term river temperature moni-
toring is essential for assessing drivers of change in ecological systems, these data are rarely available from
statutory monitoring.
We utilized a 105-year citizen science data set of river water temperature from the River Spey, North-East
Scotland, gathered during the fishing season (April–October) between 1912 and 2016. As there were gaps
in the records we applied generalised additive models to reconstruct long-term daily river temperature in the
fishing season from air temperature, cumulative air temperature, day length and runoff. For that, continuous
hydrometeorological data have been obtained from statutory monitoring and process-based models.
Long-term warming trends of river temperature, namely an increase of 0.2 K per decade after 1961, have been
mostly related to increasing air temperature of the same magnitude. Indirect impacts of rising air temperatures
include less snow accumulation and snowmelt as well as earlier snowmelt. The snow free period starts around
2 days earlier per decade throughout the study period and 7 days earlier per decade after 1965. Consequently, the
contribution of snow melt and its cooling properties to river temperature in spring are declining.
Citizen science delivered a data set that filled a vital knowledge gap in the long-term historical assessment of
river temperatures. Such information provides a robust basis for future assessments of global change and can
help inform decision-makers about the potential importance of enhancing the resilience of rivers and aquatic
ecology to climate change.
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1. Introduction
River water temperature influences many biochemical processes
and aquatic ecology (Perkins et al., 2012; Verbrugge et al., 2012). The
growth rate, habitat, life-cycle and reproduction of salmonid species
are influenced by river temperature, either directly or indirectly
through its influence on the oxygen content of water (Jonsson and
Jonsson, 2009; Jonsson, 1991; O'Gorman et al., 2016). High river tem-
peratures increase salmonid vulnerability to diseases (Carraro et al.,
2017). Hence, increasing river temperature affects the suitable thermal
habitat for salmonids (Isaak et al., 2015; Mohseni et al., 2003). In
Switzerland, declining brown trout populations have been attributed
to river temperature increases (Hari et al., 2006). In Scotland, decreasing
trends of spring rod catches of Atlantic salmon have been reported
(Youngson et al., 2002) and earlier out-migration of smolts has been at-
tributed to increasing spring river temperature (Langan et al., 2001).

Long-term river temperaturemonitoring forms a basis for robust es-
timations of warming rates (Isaak et al., 2018) and can provide informa-
tion for catchment managers to support decision making aimed at
increasing resilience to warming river temperatures. Yet, only few
long-term datasets of river temperature from statutory or experimental
monitoring exist (Arora et al., 2016). The longest record described in the
scientific literature refers to daily records of the Danube at Linz, Austria,
which began in 1901 (Webb and Nobilis, 1994). Only few other river
temperature records dating back to the 1920s and 1930s are described
in the scientific literature (Fofonova et al., 2016; Kaushal et al., 2010).
With the exception of a study in the Girnock Burn, Scotland, with re-
cords dating back to 1968 (Langan et al., 2001), there is a lack of long-
term monitoring of river temperature in the UK (Hannah and Garner,
2015; Jonkers and Sharkey, 2016).

Understanding long-term changes in river temperatures and their
drivers of change is essential to reconstruct historic records and for fu-
ture projections (Caldwell et al., 2015; Webb and Walling, 1992).
River temperature ismainly controlled by thermal inputs into the catch-
ment, hydrological conditions, landscape and channel characteristics
(Dick et al., 2017; Jackson et al., 2017b). Observations of global radiation
are rare, hence air temperature which is controlled by global radiation
and routinely measured, is widely recognised as a surrogate variable
(Johnson et al., 2014; Koch and Grünewald, 2010). Indirect influences
on intra-annual variability of river temperature include precipitation,
snowmelt and discharge (Arora et al., 2016; Merriam et al., 2017;
Toffolon and Piccolroaz, 2015). High discharge from snowmelt contrib-
utes to cooler river temperatures in spring and early summer (Toffolon
and Piccolroaz, 2015). Low summer stream-flow results in small
thermal capacity of the river and high sensitivity to air temperature
(Arora et al., 2016). Due to the strong influence of landscape and
channel characteristics on river temperature, its relationship with
hydroclimatic variables are site-specific (Chen et al., 2016; Jackson
et al., 2017b). Long-term trends in river temperature are influenced by
land cover changes such as urbanisation and loss of riparian woodland
(Isaak et al., 2010; Kaushal et al., 2010). Further influences on river tem-
perature include thermal discharges, e.g. cooling water from power
plants and distilleries (Baum et al., 2005; Hardenbicker et al., 2017;
Koch et al., 2015; Müller et al., 2007).

We investigate a unique long-term record (1912–2016) of river
temperatures collected through citizen science in the River Spey, a
major salmonid river in North-East Scotland. The river is designated as
a special area of conservation for Atlantic salmon (Salmo salar) and
Freshwater pearl mussel (Margaritifera margaritifera) that depend on
salmon, both of which are highly sensitive to changes in river tempera-
ture (Lopes-Lima et al., 2018). Specifically, we address two questions
(1) Is there evidence for long-term changes in river temperature?
(2) What are the key drivers?

Our analysis of long-term records of river temperature provides a) a
robust baseline to assess future changes in river temperatures;
b) relevant insights for ecosystem functioning; and c) evidence to
inform stakeholders of the need for proactive mitigation to protect the
biodiversity and rural economies that depend on healthy and sustain-
able fish populations.

2. Materials and methods

2.1. Study area

River temperature data have been investigated at four fishing loca-
tions (beats) on the Tulchan Sporting Estate, River Spey in North-East
Scotland (Fig. 1). The fishing beats are located approximately 20 km
downstream of the gauging station Grantown-on-Spey. The model
domain includes the entire catchment area draining to Boat o' Brig
(area approximately 2860 km2). The land cover is characterized by
montane habitats, heath, and bog (ca. 63% in total), woodland (ca.
18%), and grassland (ca. 16%) and only small areas with arable and
urban land use (CEH, 2012). The elevation ranges from 43 m to
1300 m above sea level. Characteristics of the River Spey catchment
are representative of Scotland's upland and lowland systems in terms
of land cover and management, population and industry. Sporting es-
tates are an important part of Scotland's rural economy with revenue
from game fishing on the River Spey exceeding £11 million per year
(Butler et al., 2009).

The annual mean air temperature is 5.5 °C (standard reference pe-
riod 1961–1990) with pronounced seasonality (January mean: 0.2 °C,
July mean: 11.6 °C). Long-term average annual precipitation is approx-
imately 1200 mm (standard reference period 1961–1990) with higher
precipitation in winter (January: ca. 125 mm) than in summer (July:
ca. 85 mm). Consequently, discharge is higher in winter than in sum-
mer, whereby snow plays a major role in the regional water balance
(Helliwell et al., 1998).

TheRiver Speyhas been classed as ‘good’with respect to its ecological
status according to the European Water Framework Directive and rela-
tively pristine and oligotrophic throughout (Joint Nature Conservation
Committee, 2016). As there are few water quality, hydromorphological
issues or barriers to fish migration in the catchment, the threat of
increasing river temperatures is deemed a significant concern for the
future.

Compilation of a data base of river temperature and explanatory var-
iables River temperature and water level data were routinely collected
by fishing attendants (ghillies) as part of a unique citizen science exer-
cise. Every morning before fishing commenced, river temperature data
were recorded using mercury thermometers to determine the type of
fly required for fishing and water levels were measured from standard
stage posts. It is understood from the Estate manager of N40 years that
the location and methods used for recording river temperature and
level have remained unchanged for the record length. Data have been
recorded in books from 1912 to 2016 and have been transcribed follow-
ing strict quality control procedures at The JamesHutton Institute. River
temperature has been converted from degree Fahrenheit to degree
Celsius, temperature differences have been converted to Kelvin, and
water levels have been converted from feet and inches to metres. The
availability of river temperature data is summarized in the supporting
information 1 (Fig. S1.1). The data availability is highest within the fish-
ing period, mostly between April (week 15) and October (week 40).
Based on the data availability, two time windows covering spring
(week 15-week 22) and the entire fishing season (week 15–week 40)
in the ten year periods 1926–1935, 1956–1965, 1976–1985 and
2006–2015 have been selected for detailed analysis.

To explore the influences of hydroclimatic drivers on river tempera-
ture, we collated a data base of continuous daily values of meteorologi-
cal and hydrological variables for the time period 1926–2015 as limited
by data availability.

A data basis of continuous daily hydrometeorological data has been
obtained from both conventional monitoring as well as simulation
results. For the time period 1961–2015 daily air temperature and



Fig. 1. Overview of the study region including themonitoring stations: fishing beats (river temperature, water level), gauging stations (discharge), weather stations (precipitation and air
temperature). This figure is available in colour online.
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precipitation valueswere available for 25 km2 grids derived from obser-
vational data by the Met Office (UKCP09 data, period 1961–2015).
Values for subcatchments were derived using area-weighted averages
for this period. For earlier years, air temperature records from the sta-
tions are transferred to the subcatchments using regression models of
the form:

Ta;subcatchment;d ¼ cþ Ta;station;d þ ε; ðS1:1Þ

where Ta, subcatchment, d is the reconstructed dailymean air temperature of
the subcatchment, Ta, station, d is the daily air temperature at the station as
calculated as the average of the observed minimum and maximum air
temperature, c is a coefficient estimated as the intercept of a fitted linear
model between the reconstructed and the observed air temperature
with slope 1, and ε is the statistical error term.

Precipitation records from the surrounding stations are transferred
to the subcatchments using regression models with zero intercept and
slope as the ratio between precipitation of the subcatchment in the
1960s (obtained from the gridded product) and the station of the form:

Psubcatchment;d ¼ Pstation;d �
Psubcatchment;1960s

Pstation;1960s
þ ε; ðS1:2Þ

where Psubcatchment, dis the reconstructed daily precipitation of the
subcatchment, Pstation, d is the daily observed precipitation at themeteo-

rological station and Psubcatchment;1960s
Pstation;1960s

is the ratio between precipitation for

the subcatchment from the 25 km gridded product and the observation
at the station between 1961 and 1969 for which data availability and
quality at the stations is high. For each subcatchment, the station
which corresponded well to the weighted gridded averages was se-
lected (if data were available). Alternatively, another station was
chosen. Details on the regression models used for reconstructing air
temperature and precipitation are provided in Table S1.1.

A single layer degree-day snow model (Spencer, 2016) has been
applied to simulate snow water equivalent, snow melt and effective
precipitation. The model runs on a daily time step and uses air temper-
ature and precipitation as input variables. The model had been
parameterised by calibration and validation forMet Office snow records
and data obtained through citizen science by the Snow Survey of Great
Britain (Spencer et al., 2014). For the period 1961–2015 we applied the
snow model to 5 km ∗ 5 km grids for which meteorological variables
were available and then averaged the results to subcatchments. For
the years before 1961 the model was run for subcatchment averages
of air temperature and precipitation. Catchment runoff was simulated
by the conceptual hydrological model TUWmodel (Parajka et al.,
2007). To explicitly account for snow as simulated by the single layer
degree-day snow model, the internal snow routine of TUWmodel was
deactivated. The hydrological model was parameterised by calibrating
observed daily discharge from the gauging station upstream of the
fishing beats at Grantown-on-Spey using the Kling-Gupta Efficiency
(Gupta et al., 2009) as objective function.

The parameter values of the calibrated snow and hydrologicalmodel
are shown in the supplementary material (Table S1.2). The model per-
formance with respect long-term annual runoff, root mean square
error (RMSE), bias,mean absolute error (MAE), Nash-Sutcliffe Efficiency
(NSE, Nash and Sutcliffe, 1970), Nash-Sutcliffe efficiency calculated for
natural logarithms of observed and simulated discharge (NSEln), coeffi-
cient of determination (R2), Volume Efficiency (VE, Criss and Winston,
2008) and Kling-Gupta Efficiency (KGE) is reported in Table 1. We
applied this parameter set for the individual subcatchments of the
fishing beats. The model was applied to simulate runoff using both re-
constructed (years 1921–1960) and observed meteorological input



Table 1
Performance of the hydrological model at the gauging stations Grantown-on-Spey and Boat o' Brig. Long term mean annual runoff R and evaluation criteria: root-mean-square-error
(RMSE), bias, mean absolute error (MAE), Nash-Sutcliffe Efficiency (NSE), Nash-Sutcliffe Efficiency calculated for natural logarithms of observed and simulated discharge (NSEln), coeffi-
cient of determination (R2), Volume Efficiency (VE) and Kling-Gupta Efficiency (KGE).

Criterion Optimum Grantown-on-Spey Boat o' Brig

value Calibration (1963–1982) Validation (1983–2012) Calibration (1963–1982) Validation (1983–2012)

R observed [mm/a] – 648 713 690 745
R modelled [mm/a] – 657 794 578 680
RMSE [mm/d] 0 0.70 0.88 0.85 0.84
BIAS [mm/d] 0 0.03 0.21 −0.31 −0.20
MAE [mm/d] 0 0.45 0.56 0.49 0.51
NSE 1 0.73 0.74 0.67 0.72
NSEln 1 0.71 0.71 0.66 0.71
R2 1 0.76 0.79 0.72 0.74
VE 1 0.75 0.71 0.74 0.75
KGE 1 0.87 0.84 0.77 0.83
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variables (years 1961–2015). Tominimize the influence of initial condi-
tions on the model results we regarded the first four years of simula-
tions as warm-up period and did not include these in further analysis.

2.2. Statistical analysis

Trends of observed data were only estimated for individual weeks
with high data availability as gaps in the record would introduce
a bias on trend estimation, e.g. annual average values would be
underestimated in years with more observations in spring than in
summer. To detect long-term changes in observed river temperatures,
the weekly averages for periods with high availability of river tempera-
ture data were compared in terms of central tendency and variances
using the Kruskal-Wallis test and the Levene test (implemented in the
R-package car, Fox et al., 2018) respectively.

As a basis for long-term trend investigations, river temperature was
reconstructed using generalised additive models (GAMs) which are
widely applied to link river temperatures and hydrometeorological
variables (Imholt et al., 2011; Jackson et al., 2018)We reconstructed
continuous daily time series of river temperature in the fishing season
(weeks 15–40) of the years 1925–2016.

As a prerequisite to model river temperature, regression relation-
ships between river temperature and hydrometeorological variables
were investigated. Based on factors influencing river temperature iden-
tified in the literature (Jackson et al., 2017a; Merriam et al., 2017;
Mohseni et al., 1998; Toffolon and Piccolroaz, 2015) we considered
the variables air temperature, runoff, precipitation, snow melt, the
ratio of snow melt over total runoff and water levels. Additionally, we
investigated the relationships between river temperature and cumula-
tive air temperature from the beginning of the calendar year and day
length. Antecedent conditions influencing river temperature (see e.g.
Koch and Grünewald, 2010; Mohseni et al., 1998) were considered by
analysing the relationship between river temperature and the moving
average of each of these variables over the preceding days, including
the day of river temperature measurements. We chose the number of
preceding days for which the correlation between river temperature
and air temperature was highest. In a next step, GAMs were fitted
using the R-package mgcv (Wood, 2018) for data from Beat D, the fish-
ing period in 1961–2015 was selected as the training period due the
high availability and quality of river temperature records alongwith ob-
served hydrometeorological variables for Beat D. At an early stage of the
analysis, the model showed a number of residuals with absolute errors
over 3 K. These values were visually checked and 144 implausible
river temperature observations (e.g. in case of pronounced increases
in river temperature despite declining air temperature) were removed.
A model to predict river temperature for all fishing beats was selected
based on the Akaike information criterion (AIC), coefficient of determi-
nation (R2), and root mean square error (RMSE) in the training period
and the availability and influence of the predictor variables. To evaluate
the model robustness over the entire study period and at all fishing
beats themodelwas then evaluated for both the training and test period
(1925–1960), using reconstructed meteorological variables and at all
fishing beats also for Kling-Gupta Efficiency (Gupta et al., 2009) and
Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970).

Trend analysis and change point analyses were conducted for both
the hydrometeorological variables and modelled river temperatures
using theMann-Kendall trend test and the Pettitt test for change points
of the central tendency in time series using the R-package trend
(Pohlert, 2018). We fitted linear regressions for the entire record
where hydrometeorological variables were available (1925–2015). To
account for interannual variability and the influence of starting
and ending year on trend detection, we performed trend and change
point analysis for moving windows of forty year periodsand reported
forty-year trends starting in five or more consecutive years. The
modelled river temperatures for the decades 1926–1935, 1956–1965,
1976–1985 and 2006–2015 were compared to the observed values in
these data-rich periods.

3. Results

3.1. Long-term changes in observed river temperature

The rawdata at the fishing beats show tendencies of increasing river
temperatures and an earlier warming in spring (Fig. 2). At Beat D, ob-
served weekly river temperature tends to increase by around 0.02 K
per year throughout the record length in weeks 15 and 22 for which
data availability is relatively high. For periods with high data coverage
(spring: weeks 15–22 and fishing season: weeks 15–40 in the decades
1926–1935, 1956–1965, 1976–1985 and 2006–2015), weekly river
temperatures are shown in Table 2 (mean and maximum values for all
fishing beats) and Fig. 3 (weekly values exemplified for Beat D). Com-
pared to 1926–1935, mean river temperatures in spring in 1976–1985
and 2006–2015 are between 0.2 K and 2.5 K higher. These changes are
mostly statistically significant; themagnitude of change varies between
the fishing beats (Table 2). The maximum weekly river temperature in
spring increases for all beats by approximately 2 K between the decade
1926–1935 and later periods.

Mean and median river temperature in the typical fishing season
(weeks 15–40) and 2006–2015 is significantly higher by up to 2 K
than in 1926–1935 at Beats A, B and D. At Beats B and D significant
increases also occur between 1926–1935 and 1976–1985. At Beats A
and D, river temperature is significantly higher in 2006–2015 than in
1976–1985. The direction of change of maximum river temperature
in the fishing season differs between the fishing beats. Also, there is
no consistent spatial pattern in terms of mean values or variance of
the fishing beats in different decades. River temperatures show high
temporal variability within the fishing season withmean values around
5 to 7 °C in April and between 12 and 15 °C in July and August (Fig. 3c).



Table 2
Statistics of weekly observed river temperatures [°C]. Mean, maximum and variance of
weekly averages in spring (weeks 15–22) and the fishing season (weeks 15–40) for pe-
riodswith high data availability. Symbols formean and variance denote statistically signif-
icant differences compared to 1926–1935 (* p ≤ 0.05) and to the respective preceding
periods (+p ≤ 0.05) based on theKruskal-Wallis-Test for central tendency and the Levene
Test for equality of variances.

Beat Statistic Weeks 1926–1935 1956–1965 1976–1985 2006–2015

A Mean 15–22 7.8 8.2 10.0*,+
Mean 15–40 10.5 11.3 12.5*,+
Maximum 15–22 12.6 15.8 16.5
Maximum 15–40 17.5 22.2 21.1
Variance 15–22 5.2 6.2 4.6
Variance 15–40 9.7 12.6 7.1*,+

B Mean 15–22 7.8 9.2* 8.6
Mean 15–40 10.6 12.0* 12.5*
Maximum 15–22 12.8 15.9 14.4
Maximum 15–40 17.8 22.2 19.7
Variance 15–22 4.9 9.0+ 6.4
Variance 15–40 9.0 12.3 8.8*

C Mean 15–22 7.9 9.8* 8.1+ 8.6
Mean 15–40 10.7 10.8 12.3
Maximum 15–22 13.1 17.2 14.7 14.8
Maximum 15–40 23.3 17.8 20.2
Variance 15–22 5.1 4.1 5.8 6.1
Variance 15–40 9.6 8.2 9.7

D Mean 15–22 7.8 9.6* 8.9* 9.7*
Mean 15–40 10.9 12.2* 12.5*
Maximum 15–22 13.1 16.4 14.7 15.1
Maximum 15–40 23.9 23.3 19.3
Variance 15–22 5.1 4.41 6.6+ 6.1
Variance 15–40 9.9 12.7 7.8*,+

Fig. 2.Rawdata of observed riverwater temperature (Tw) [°C] atfishingBeatD. a)Number
of weekly records, b) Weekly mean temperature, c) Water temperature in week 15 over
the record length, d) Water temperature in week 22 over the record length. This figure
is available in colour online.
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The correlation between river temperatures at the different fishing
beats is highly positive (correlation coefficient N 0.85, Table S2.1) but
differ slightly in magnitude (linear model intercept between Beat D
and other fishing beats between 0.5 and 1.5, linear model slope N 0.90,
percent bias b5%).

3.2. Modelling river temperature from relationships with hydrometeorolog-
ical variables

River temperature is positively correlated with air temperature, cu-
mulative air temperature from beginning of the year and day length,
but negatively correlated with precipitation, snow melt, runoff, the
ratio of snowmelt over total runoff and observed water level (Table 3).
These relationships are mostly stronger when a moving average over
the eight days preceding and including the day of river temperature
observation is considered. For cumulative air temperature, a moving
average of eight days preceding the temperature measurements does
not improve the relationship. For water level the relationship could
not be evaluated for eight day moving averages as continuous records
of water level at the fishing beats were not available. Pronounced rela-
tionships exist between the different hydrometeorological variables,
e.g. air temperature is positively correlated with cumulative air temper-
ature and day length, but negatively correlatedwith precipitation, snow
melt, runoff, snow melt ratio and water level (Table S2.2).

Air temperature is the most important predictor of river tempera-
ture, explaining N60% of the variation of river temperature in GAMs
(Table 4). The model performance improves when cumulative air
temperature and day length are included. Together, air temperature,
cumulative air temperature, and day length account for 78% of the var-
iation in river temperature in the training period. Minor improvements
of themodel performance (reduction of AIC and increasing coefficient of
determination in the training period) are obtained when runoff, the
ratio of snow melt over total runoff, and precipitation are included.
Water level is a variable associated with a statistically significant
coefficient in the GAM but only results in small improvements of
the model performance (additional 1% of the variation in river
temperature explained in the training period). Julian day improves
the model performance compared to using air temperature alone
(explained variance: 81% compared to 65%) but does not improve the
model performance when cumulative air temperature and day length
are considered.

To be able to reconstruct daily river temperature from hydrometeo-
rological variables in the fishing period, we decided to apply a GAM
which includes air temperature, cumulative air temperature, day length,
and log-transformed runoff (each averaged over the eight days preced-
ing the water temperature measurements, model 8 in Table 4) for
further analysis. The final model performs satisfactorily at all fishing
beats with a coefficient of determination, Kling-Gupta Efficiency and
Nash-Sutcliffe Efficiency mostly above 0.70 and percent bias below
10% (Table 5). The model residuals are symmetric and approximately
normally distributed, and do not show pronounced seasonality or dif-
ferences between the years.



Fig. 3. Observed river temperature Tw [°C] as weekly averages at fishing Beat D for periods with high data availability: a) spring (weeks 15–22), b) entire fishing season (weeks 15–40),
c)weekly averages for decades. Boxes show 25th, 50th (middle line) and 75th percentile, whiskers show the lowest and highest datumwithin the 1.5 interquartile range of the lower and
upper quartile, respectively, and individual points symbolize outliers. Cross symbols showmean value. Asterisks indicate significant difference from central tendency ofwater temperature
in period 1926–1935 according to the Kruskal-Wallis test (* p ≤ 0.05). This figure is available in colour online.
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3.3. Long-term changes in hydrometeorological variables

Air temperature increased especially after 1958 and hence earlier
snowmelt and less snowmelt during thefishing season are themost pro-
nounced changes in hydrometeorological variables. Annual precipitation
and thus modelled runoff increased, these changes occurred mostly in
winter, while no significant changes occurred in the fishing season.

Mean annual air temperature increases by around 0.008 K year−1 for
the period 1926–2015 (Fig. 4a). All forty-year periods after 1958 show
significant increases of mean annual air temperature increase by on
average 0.023 K year−1. Significant upward change points occur in
1931 and 1987 (depending on the forty-year periods for which change
points have been analysed). In the fishing season, air temperature in-
creases by around 0.006 K year−1 for the period 1926–2015 (Fig. 4b)
with a significant increase in all forty-year periods after 1958 (on average
by 0.020 K year−1). Upward change points of air temperature in thefish-
ing season occur in 1932 and 1994 depending on the forty-year periods
chosen for analysis; 1949 marks a downward change point. For the
periods with high availability of water temperature observations at
Beat D, significant increases in the mean air temperature in 2006–2015
compared to 1926–1935 occur both in the spring (weeks 15–22)
and the entire fishing season (weeks 15–40, Table S.3.1). Furthermore,
the cumulative air temperature from the beginning of the year is signif-
icantly higher in period 2006–2015 compared to the other periods inves-
tigated during the fishing season.
Table 3
Statistically significant relationships between observed river temperature and the covari-
ates air temperature (Ta), cumulative air temperature since beginning of the year (Ta,cum),
precipitation (P), day length (DL), snow melt (SM), natural runoff (R), snow melt ratio
(SM/R), water level (W) at fishing beat D for the time period 1961–2015 (considering
Bonferroni correction for eight covariates p b 0.05/8 (0.00625)). Intercept, slope, coeffi-
cient of determination (R2), F statistic and degree of freedom (DF) of linear models
between river temperature and covariates of the same day or averaged over a period of
8 days before the temperature measurement.

Variable Moving average [days] Linear model

Intercept Slope R2 F Statistic DF

Ta 1 5.24 0.73 0.61 5022 3160
8 3.82 0.89 0.74 8909 3160

Ta,cum 1 9.29 0.003 0.25 1081 3160
8 9.43 0.003 0.24 1008 3160

P 8 12.54 −0.23 0.02 62.8 3160
DL 1 −1.08 0.83 0.20 776.5 3160

8 −3.71 1.00 0.28 1201 3160
SM 1 11.93 −1.00 0.04 149 3160

8 12.04 −1.70 0.10 357 3160
R 1 14.69 −2.27 0.24 992.9 3160

8 14.81 −2.23 0.26 1120 3160
SM/R 1 11.94 −3.23 0.05 180.7 3160

8 12.15 −7.75 0.15 563.5 3160
W 1 13.11 −7.58 0.24 987.2 3119
Annual precipitation slightly increases over the entire period
1926–2015 and especially in forty-year periods starting between 1959
and 1973 (around 5.8 mm year−1, Fig. 4c). Precipitation in spring and
the fishing season does not show pronounced long-term changes
(Fig. 4d, Table S3.1).

Annualmodelled runoff slightly increaseswith significant forty-year
trends starting between 1945 and 1972 showing an average increase of
5.33mmyear−1 (Fig. 4e). Upward change points occur in the late 1970s
and early 1980s. In thefishing season, runoff does not showpronounced
changes (Fig. 4f, Table S3.1). The direction and magnitude of runoff
change are consistent with observed records at Grantown-on-Spey
and Boat o' Brig (Table S3.2, Fig. S3.1). In contrast, observed median
water levels decrease, e.g. between 1926–1935 and 2006–2015 by
40 cm in spring (Table S3.3). Runoff and water levels show relatively
high positive correlations in individual decades (Fig. S3.2 a–i). However,
there is a clear tendency for a decreasing intercept in the relationships
between runoff and water levels for individual decades (i.e. the same
runoff resulting in lower water levels in later decades, Fig. S3.2 j).

Snow melt and thus the ratio of snowmelt over total natural runoff
tends to decline in spring, the fishing season and annually (Fig. 4g,
Table S3.1). Averaged over the period 1925–2015 the snow melt ratio
declines by around 0.1% year−1 with most pronounced changes
for forty-year periods starting between 1958 and 1975 (around
0.2% year−1). A downward change point occurs in 1984.

Between 1926 and 2015 the snow free period starts on average
0.18 days earlier per year. A faster shift (0.63 d year−1) occurs after
1965, whereby 2001 marks a downward change point (Fig. 4h).

3.4. Long-term changes in modelled river temperature

Modelled river temperatures increase with strongest warming ten-
dencies after 1960 (Fig.5, Table 6). Themean river temperature in spring
and the entire fishing season increase by around 0.006 K year−1 and
0.004 K year−1 over the period 1926–2015, respectively (Fig. 5a,b).
Significant increasing trends by around 0.024 K year−1 (spring) and
0.018 K year−1 (entire fishing season) occur for forty-year periods
starting between 1962 and 1970 whereby 1988 marks an upward
change point. Significant changes in the maximum river temperature
in the entire fishing season occur for forty-year periods starting be-
tween 1958 and 1967 with an average warming of 0.044 K year−1

(Fig. 5d). Hereby, 1953marks a downward and 1981 an upward change
point. The comparison of seasonal patterns shows tendencies towards
an earlier warming in spring in later decades (Fig. 5e). The comparison
of mean and maximum values based on weekly averages over spring
(weeks 15–22) and the entire fishing season (weeks 15–40), shows
high variability between the decades but only few appreciable increases
from one decade to the next (Table 6). The modelled mean andmedian
river temperatures for both spring and the entire fishing season are
around 1.5 K higher compared to the observations in 1925–1936, but



Table 4
General additive models for predicting river temperatures from covariates air temperature (Ta), cumulative air temperature since beginning of the year (Ta,cum), day length (DL),
modelled runoff (R), snow melt (SM), snow melt ratio (SM/R), precipitation (P), water level (W), day of year (DOY). Evaluation criteria: Akaike information criterion (AIC), coefficient
of determination (R2), percent bias (PBIAS), root-mean-square-error (RMSE) for the training period and in brackets for the test period. Note that 144 river temperature observations have
been removed as they appeared as outliers. Asterisks denote significant coefficients (considering Bonferroni correction for nine covariates p b 0.05/9 (0.0056)) of covariates. The final
model chosen (model 8) is highlighted in bold and italics.

ID Covariates and length of smoothing window (days) Performance training period
(Performance test period)

Ta Ta,cum DL R (log) SM SM/R P W DOY AIC R2 PBIAS RMSE

1 1* 12,551 0.65 (0.70) 0 (10.5) 1.93 (2.06)
2 8* 12,513 0.66 (0.69) 0 (10.2) 1.91 (2.05)
3 8* 1* 11,323 0.77 (0.74) 0 (6.1) 1.58 (1.77)
4 8* 8* 11,263 0.78 (0.74) 0 (6.0) 1.56 (1.77)
5 8* 8* 1* 10,485 0.83 (0.82) 0 (6.3) 1.37 (1.51)
6 8* 8* 8* 10,453 0.83 (0.82) 0 (6.5) 1.36 (1.53)
7 8* 8* 8* 1* 10,238 0.84 (0.83) 0 (6.4) 1.31 (1.50)
8 8* 8* 8* 8* 10,231 0.84 (0.83) 0 (6.7) 1.31 (1.50)
9 8* 8* 8* 8* 1 10,230 0.84 (0.83) 0 (6.7) 1.31 (1.50)
10 8* 8* 8* 8* 8 10,228 0.84 (0.83) 0 (6.7) 1.31 (1.50)
11 8* 8* 8* 8* 1 10,228 0.84 (0.83) 0 (6.7) 1.31 (1.50)
12 8* 8* 8* 8* 8 10,228 0.84 (0.83) 0 (6.7) 1.31 (1.50)
13 8* 8* 8* 8* 8 1 10,227 0.84 (0.83) 0 (7.4) 1.31 (1.53)
14 8* 8* 8* 8* 8 8* 10,222 0.84 (0.83) 0 (7.0) 1.31 (1.51)
15 8* 8* 8* 8** 8* 10,226 0.84 (0.83) 0 (6.9) 1.31 (1.50)
16 8* 8* 8* 8* 8 1* 10,074 0.84 (0.84) 0 (5.7) 1.30 (1.43)
17 8* 8* 8* 8* 8* 1* 1* 10,008 0.85 (0.84) 0 (5.2) 1.29 (1.42)
18 8* 8* 8* 8* 8 8* 1* 10,194 0.84 (0.83) 0 (7.2) 1.30 (1.52)
19 8* 1* 10,741 0.81 (0.80) 0 (9.5) 1.43 (1.72)
20 8* 8* 8* 1* 10,381 0.83 (0.81) 0 (7.5) 1.34 (1.60)
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are approximately 0.7 K lower than the values obtained from the
observations in 1976–1985 and 2006–2015. The modelled maximum
river temperature in the spring season is approximately 0.8 K lower
than the observation with stronger differences for maximum values
(compare Table 2).

The river temperature model captures the long-term dynamics of
the river temperature observations at all fishing beats (Fig. 6, coefficient
of determination N0.7 in thefishing seasonwhen comparing averages of
observations and modelled values for dates when observations are
available). Annual values calculated from modelled daily continuous
river temperatures show different dynamics with less pronounced
warming tendencies compared to annual averages calculated from the
records taken at irregular intervals.

4. Discussion

4.1. Influences on river temperature

Intra-annual variability of river temperature is dominated by ther-
mal inputs to the catchment represented by air temperature, and day
length (as additional surrogate for global radiation). Also heat storage
in the catchment (represented by cumulative air temperature) and
runoff influence intra-annual variations in river temperature.

We found air temperature to be the most important predictor
of river temperature, which is consistent with the literature (Jackson
et al., 2017a; Kelleher et al., 2012; Rabi et al., 2015). A higher correlation
between river temperature and air temperature averaged over the
Table 5
Performance of the chosen GAM (model 8 in Table 4) for river temperature of all fishing beats.
square-error, KGE Kling-Gupta Efficiency, NSE Nash-Sutcliffe Efficiency, n number of data pairs

Beat Period 1961–2015 Perio

R2 PBIAS RMSE KGE NSE n

A 0.78 0.8 1.76 0.82 0.78 2394
B 0.75 3.7 1.78 0.83 0.74 2060
C 0.73 6.1 1.78 0.81 0.68 2964
D 0.84 0 1.31 0.88 0.84 3018
preceding eight days, indicates the influence of thermal energy inputs
and heat storage in the entire catchment, as noted by Koch and
Grünewald (2010). The role of heat storage in the catchment is further
reflected by the significant relationship of cumulative air temperature
on river temperature also shown by the improved performance of the
GAM. Day length shows positive correlation with river temperature
and furthermore improves the GAM. Precipitation, snow melt, natural
runoff as well as the ratio of snow melt over natural runoff reduce
river temperature, which has been observed in various studies (Arora
et al., 2016; Bolduc and Lamoureux, 2018). Lag times in the catchment
are evident from hydrometeorological variables averaged over eight
days preceding and including the day of river temperature measure-
ments being stronger related to river temperatures than hydroclimatic
variables at the day of river temperature measurement alone (Tables 3
and 4). The inclusion of water level did not improve the model perfor-
mance as its influence is largely confounded with that of natural runoff.
Due to gaps in the observed water level data and the inconsistency in
the trend of water level with runoff, water level was not included in
the final generalised additive model. Julian day, which is often used in
statistical river temperature models (Jackson et al., 2017b), does not
improve the model performance when cumulative air temperature
and day length are considered. We argue that Julian day is a surrogate
for both the influences of heat storage and global radiation which are
captured by air temperature and day length. However, Julian day does
not account for heat storage dynamics and is therefore not appropriate
for long-term studies covering periods with trends in air temperature.
Julian day was therefore excluded from further analysis.
Evaluation criteria: coefficient of determination R2, PBIAS percent bias, RMSE root-mean-
.

d 1925–1960

R2 PBIAS RMSE KGE NSE N

0.88 9.0 1.46 0.84 0.82 790
0.89 9.8 1.44 0.86 0.83 980
0.78 4.9 1.47 0.81 0.75 933
0.83 6.7 1.50 0.83 0.79 2006



Fig. 4. Long term changes in hydrometeorological variables: Top row: air temperature Ta [°C]: a) annual mean values, b) mean value in the fishing season (week 15–40), second row:
precipitation P [mm]: c) annual sum, d) sum in the fishing season, third row: natural runoff R [mm]: e) annual sum, f) sum in the fishing season, bottom row: snow melt: g) ratio of
snow melt over total natural runoff (SM/R) on an annual basis, h) last snow melt day in spring. Trend interpretation: linear regression over the time period 1926–2015 (orange line
indicates intercept and slope), windows longer than 5 years with trend over a 40-year record (grey polygons indicate average intercept and slope for the windows), upward (purple
line) and downward (blue line) change point according to the Pettitt test for different 40 year moving windows. This figure is available in colour online.
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The variation in river temperature in the training and test periodwas
explained by a GAM which includes air temperature, cumulative air
temperature, day length, and natural runoff as explanatory variables.
The annual and seasonal variations of river temperature are captured
by air temperature, cumulative air temperature and day length. Natural
runoff accounts for short-term variations. As the fishing season includes
relatively few days with snow melt, both snow melt and the ratio of
snowmelt over total runoff did not influence themodel results substan-
tially. The identification of the explanatory variables was consistent as
shown by the satisfactory model performance at all fishing beats and
for both the training and test period.

4.2. Long-term changes in river temperature and its drivers

Observed increases in river temperature can be attributed to increas-
ing air temperatures. The long-term increase of river temperatures of
0.003 K per year averaged over the fishing season between 1926 and
2015 and around 0.020 K per year after 1961 is in the range of other
studies around the world (e.g. around 0.009–0.08 K per year in the
United States, Kaushal et al., 2010; around 0.007 K per year over a
122 year time series in France, Moatar and Gailhard, 2006). In our
study, the changes are most pronounced in spring, which is consistent
with findings from a 30-year record (1968–1997, Langan et al., 2001)
from the Girnock Burn, North-Eastern Scotland. A direct comparison of
observed trends, however, between the two catchments was not
possible due to the gap in data from the River Spey between 1968 and
1997. However, a greater increase in spring water compared to the en-
tire fishing season is also reflected in themodelled river temperature of
our study. Increases of spring river temperature in our study (0.024 K
per year after 1960) correspondwell with a 0.03 K increase per year be-
tween 1981 and 2001 as simulated by Jonkers and Sharkey (2016).

Due to the close relationship between air temperature and river tem-
perature, significant long- term increases in air temperature, especially
since the 1960s, are found to drive the increase in river temperature.



Fig. 5.Modelled river temperature Tw: a)mean values in spring (weeks 15–22), b)mean values in the fishing season (weeks 15–40), c)maximumvalues in spring, d)maximumvalues in
the fishing season, e) anomalies of weekly averages for decades (weekly average in the respective decademinus weekly average over the period 1926–2015). The vertical linemarks the
end of the spring period (weeks 15–22), the inset figure shows weekly averages over the period 1926–2015. Trend interpretation: linear regression over the time period 1926–2015
(orange line indicates intercept and slope), windows longer than 5 years with trend over a 40-year record (grey polygons indicate average intercept and slope for the windows),
upward (purple line) and downward (blue line) change point according to the Pettitt test for different 40 year windows. This figure is available in colour online.
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Air temperature increases relating to climate change found in the Spey
catchment are consistent with general warming trends for Scotland
and the entire United Kingdom related to global climate change
(Kendon et al., 2018; Prior and Perry, 2014). An upward change point
in air temperature in the late 1980s was also observed in other regions
(Gädeke et al., 2017) and has been interpreted as a combination of air
temperature cooling after the El Chichón (Mexico) volcanic eruption in
1982 and thereafter recovery in combination with anthropogenic
warming (Reid et al., 2016). This change point in air temperature is
reflected in a change point in modelled river temperature in our study
Table 6
Modelled river temperature [°C] at Beat D based on weekly averages for the spring (weeks 15–

Weeks Statistics 1926–35 1936–45 1946–55 1956–6

15–22 Mean 8.7 9.4 9.2 9.1
Maximum 12.4 13.4 12.9 13.6
Variance 3.6 3.7 4.2 4.2

15–40 Mean 11.7 12.3 12.0 11.7
Maximum 18.1 17.5 16.9 16.4
Variance 7.5 6.7 6.9 6.0
(mean value in spring and the entire fishing season) and observed
river temperature in Switzerland (Hari et al., 2006).

When comparing changes between the decades with high data
availability, both air and river temperature in spring are lowest in the
period 1926–1935 and comparably high in the periods 1956–1965
and 2006–2015. Consistent with other studies (e.g. Pekarova et al.,
2011), over the entire study period 1926–2015, changes in modelled
river temperature (ca. 0.003 K per year for the entire study period) are
less pronounced than those of air temperature in the fishing season
(ca. 0.001 K per year). After 1961, mean values of both air andmodelled
22) and the entire fishing season (weeks 15–40) in 10-year periods.

5 1966–75 1976–85 1986–95 1995–06 2006–15

8.8 8.8 9.1 9.5 9.5
12.5 14.4 13.8 14.2 14.3
4.1 4.8 4.5 4.2 4.3
11.9 11.8 12.0 12.3 12.2
18.5 18.4 17.8 18.9 18.2
7.2 7.8 7.7 7.1 6.9



Fig. 6. Observed andmodelled river temperature aggregated for the fishing season of individual years: a) Beat A, b) Beat B, c) Beat C, d) Beat D. The modelled river temperature has been
aggregated to averages in thefishing season considering onlymodelled values forwhich observationswere available (observed dates) and for all values in the respective period (all dates).
The coefficient of determination (R2) refers to the aggregated values of the fishing season in individual years.
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river temperature in the fishing season bothincrease by approximately
0.02 K per year.

Significant changes in snowmelt timing and, to a lesser extent, snow
melt amount as a consequence of air temperature increasemay further-
more contribute to changes in river temperature in spring, which is
consistent with findings for the Girnock Burn (Langan et al., 2001).
Due to relatively few observations during snow melt and the relatively
small influence of snow melt as well as the ratio of snow melt over
total natural runoff we decided not to include snow melt in the final
GAM. However, to some extent the earlier snow melt resulting from
high air temperature in winter and spring also explains comparably
high river temperature in spring of 1956–1965 and 2006–2015 com-
pared to 1926–1935 and 1976–1985 (Figs. 3a, 4h).

Total annual precipitation and natural runoff show increases which
mainly occur in the winter season, but not during the fishing season.
Due to increases in air temperature and associated higher evaporation
losses, annual natural runoff increases to a lesser extent than annual
precipitation. The increases in modelled natural runoff are less pro-
nounced in the observations at Grantown-on-Spey and Boat o' Brig
(Fig. 4e,Table S3.2, Fig. S3.1). The difference between long term changes
inmodelled and observed runoff can be explained by abstractions for ir-
rigation, industry and potable use etc. As neithermodelled nor observed
runoff shows pronounced changes in the fishing season, changes in
observed water levels at the fishing beats cannot be attributed. Hence,
despite the significant influence of discharge on intra-annual variability
of river temperatures, long-term changes in river temperature at the
fishing beats were not influenced by changes in heat capacity related
to long-term changes in discharge.

It has to be considered that river temperature has been obtained
from citizen science monitoring and is limited to dates when fishing
took place at the individual fishing beats, so records are not evenly dis-
tributed in time and this could affect assessments of historic changes
(Gray et al., 2016). We tried to overcome this by focussing the analysis
of observed river temperature on periods with high data coverage for
four fishing beats and by trend analysis of explanatory variables and
modelled river temperature for evenly-spaced data during the fishing
season. Differences in the interpretation of long-term changes between
the observed records which contain gaps and the continuous modelled
river temperature in the fishing season can thus either be attributed to
sampling bias or uncertainty with respect to the generalised additive
model. The more pronounced differences in the maximum values com-
pared to mean values indicate the influence of irregular sampling.

4.3. Uncertainties

Uncertainties are associated with (i) observations of river tempera-
ture data and hydrometeorological variables, (ii) reconstructing a
continuous record of hydroclimatic variables, (iii) river temperature
modelling and (iv) the interpretation of long-term changes.

To minimize the influence of observational uncertainties, the river
temperature data were manually investigated and implausible values
resulting from inaccurate recording or transcribing of datawere excluded.
Water levels are subject to observational uncertainties as visible from the
disagreement of their long-term tendencies with those of modelled and
observed runoff (Tables S3.2, S3.3, Figs. S3.1, S3.2). The intercept in the re-
lationship of water levels with runoff consistently declines over time and
thus we assume local changes in river bedmorphology or adjustments of
the stage post (accumulation of sediments at the base of the post) as pos-
sible reasons for declining observed water levels. These reasons remain
unsubstantiated, as anecdotal evidence from river managers indicate
that the height of the stage posts have remained unchanged.

The reconstruction of daily values of air temperature can be consid-
ered credible, whereas the reconstruction of daily precipitation is
subject to larger uncertainties (visible from the performance of the re-
gression models in Table S.1.1). As both air temperature and precipita-
tion do not show significant change points around 1960 (Fig. 4), we
can assume that reconstructing these variables from nearby stations
does not influence their long-term dynamics. As precipitation is not
identified as a significant explanatory variable for river temperature,
the relatively weak performance of the regression model in capturing
short termprecipitation dynamics does not directly influence river tem-
perature modelling. However, uncertainties related to the reconstruc-
tion of precipitation and air temperature influence the results of the
snow model and the hydrological model.

The inherent uncertainties related to structure and parameterisation
of the snow and the hydrological model can be considered relatively
small. The performance of the hydrological model can be considered
acceptable as the evaluation criteria (Grantown-on-Spey: NSE, NSEln,
R2, VE, KGE N0.70; Boat o' Brig: NSE, NSEln, N0.65 and R2, VE and
KGE N0.7) lie within the range reported for lumped hydrologicalmodels
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in other catchments (e.g. Gädeke et al., 2014; Parajka et al., 2007).
Furthermore, the long-term tendencies of modelled runoff are in rea-
sonable agreement with the observations at Grantown-on-Spey and
Boat o' Brig (Table S 3.2, Fig. S 3.1).

Modelling river temperature from hydrometeorological data using
GAMmodels is subject to uncertainties with respect to interpreting cau-
sation from correlation. To address this uncertainty, explanatory variables
with physical relevance for river temperature have been chosenmostly in
consent with other studies. The uncertainty relating to river temperature
modelling can be considered low as the GAMmodel performs reasonably
well in both a training and a test period (Table 5) and captures the long-
term dynamics of observed river temperature when values of the same
dates are compared (Fig. 6). As eight-day averages of the hydrometeoro-
logical variables are considered, the uncertainties in their short-term
dynamics are not affecting modelled river temperature.

The interpretation of long-term changes based on observed river
temperatures alone is subject to uncertainties introduced by irregular
sampling as visible for example from the disagreement of the changes
at the different fishing beats (Table 2). Hence, a trend interpretation
based on observed values alone can only be recommended for individ-
ual weeks with high data availability (Fig. 2). The bias introduced by
irregular sampling with higher warming tendencies interpreted based
on the observations alone rather than the continuous river temperature
in the fishing season is illustrated in Fig. 6.

Despite the uncertainties in the data sets and analysis, the overall
approach of investigating long-term changes in river temperature by
combining citizen science records and GAM modelling can be consid-
ered robust.

4.4. Ecological relevance

Ecological responses to changes in river temperature can vary accord-
ing to species resilience and resistance but also, in severe cases, can affect
migration, embryonic development, hatching, emergence, growth, life-
history traits, changes in behaviour and physiology and even local ex-
tinction (Jonsson and Jonsson, 2009; Parmesan, 2006). Salmonids can
withstand short-term exposure to river temperatures higher than
those needed for longer-termgrowthor survivalwithout significant neg-
ative effects, however, brown trout (Salmo trutta) are more sensitive to
temperature and acute increases in river temperature than Atlantic
Salmon (Salmo salar)(Webb andWalsh, 2004). Furthermore, freshwater
pearl mussels are vulnerable to temperature changes directly and to
temperature effects on salmonid hosts (Lopes-Lima et al., 2017).

Both observed and modelled river temperatures in the River Spey
rarely exceed 19 °Cwhich is the upper feeding threshold for Salmo trutta
and below the upper threshold required for Salmo salar to feed (Elliott
and Elliott, 2010). A daily maximum temperature of N24 °C was found
to be stressful for trout (Jonsson and Jonsson, 2009) and increasing
river temperatures adversely impact spawning and embryo develop-
ment of trout (Webb and Walsh (2004).

When these statistics are related to the results in the current study,
in general, river temperature at the fishing beats on the main stem of
the River Spey is not, at present, critical for salmonid species. Yet, higher
temperatures might occur both for downstream reaches with slow flow
velocities and salmon spawning areas in the upstream reaches (Jackson
et al., 2017a, 2018).

In linewith this study, where increasing river temperatureswere re-
corded in spring, Gregory et al. (2017) found a positive link between
Salmo salar parr length and the effect of higher spring temperatures
that are known to influence the metabolic rate of Salmo salar.

4.5. Implications for future change and climate change adaptation measures

Our analysis of long-term records of river temperature can provide a
robust basis for future assessments and relevant insights for the ecosys-
tem and rural economy, in terms of sport fishing and fish farms.
Climate change projections for Scotland assume increasing air tem-
perature and precipitation shifts from summer to winter (Murphy
et al., 2010). Further increases in atmospheric energy will contribute
to warmer river temperatures directly as shown by van Vliet et al.
(2016) in a global study. Indirect influences of changes in air tempera-
ture together with changing precipitation patterns on warmer river
temperatures are expected, due to less snow, earlier snowmelt, and de-
creasing summer runoff (van Vliet et al., 2013).

Compared to the previous century, stronger air temperature trends
are expected for the future whereby mostly lower river temperature
compared to air temperature trends are expected (Caldwell et al.,
2015; Hardenbicker et al., 2017). Albeit, Gunawardhana and Kazama
(2012) expect differences between trends in air and river temperatures
to cease due to increasing groundwater temperature and thus less
cooling influence of groundwater contributions during summer
months. In our study, this is indicated by comparable increases in river
temperature and air temperature from the 1960s onwards.

As river temperature influences salmonid habitat and life cycle, po-
tential global warming impacts on salmonid populations are highly rel-
evant (Hari et al., 2006; Isaak et al., 2018; Jonsson and Jonsson, 2009;
Young et al., 2017). If current trends continue in the River Spey, the
aquatic life of the entire river network could be affected by rising river
temperatures. For example, under a high emission scenario, Webb and
Walsh (2004) modelled a temperature increase of 2 K by 2080 in the
River Dee (a neighbouring catchment to the Spey) that was sufficient
to induce a stressful thermal habitat for brown trout. Nonetheless,
emerging evidence shows that cold water fish are adapting and becom-
ing more resilient to climatic changes by changing behaviour and seek-
ing cooler refuges in river systems (Isaak et al., 2016; Magoulick and
Kobza, 2003). Local implications of these changes on river temperatures
of the River Spey can be estimated for example by scenario assessments
using the model cascade presented in our study to estimate river
temperature under projections of air temperature and precipitation,
similar to the approach byMerriam et al. (2017). Increasing abstraction
for agriculture, industry and population should be included in future
assessments.

Due to the strong influence of global radiation on river temperature,
river managers can explore a variety of mitigation measures such as
tree planting along the riparian corridor, controlling extraction, and re-
leasing cold water from upstream impoundments (e.g. Dugdale et al.,
2017; Imholt et al., 2013). Planning of measures require deeper under-
standing of the local conditions and should be designed (location, spatial
extent, type of vegetation) to maximise effectiveness (Arora et al., 2018;
Garner et al., 2017). For example Jackson et al. (2017a), found the
warmest river temperatures in Scotland were predicted to occur where
air temperatures and elevation were high and where the channels had a
north-south orientation. In these circumstances, woodland planting in
the riparian zonewasmost effectivewhere channel widths were narrow,
the gradient low and where the aspect and orientation of the river maxi-
mises shading by woodland. Measures to mitigate rising river tempera-
ture need to consider effects on fish habitats (Fullerton et al., 2017).
Hence, our modelling cascade could be extended by process-based
modelling approaches, such as the model presented by Fabris et al.
(2018), to investigate the potential effects of mitigation measures.

4.6. Conclusion and outlook

To understand long-term changes in river temperature, we investi-
gated a 105-year record (1912–2016) of river temperature gathered by
fishing attendants (ghillies) on the River Spey. The records indicate
warming tendencies, however, due to data gaps it was not possible to
quantitatively assess long-term changes based on the observations
alone. Therefore, continuous daily river temperatures in the fishing sea-
son were reconstructed from explanatory variables (air temperature, cu-
mulative air temperature from beginning of the year, day length, runoff)
using GAMs. Long-term records of air temperature have been available
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from weather station records; runoff has been simulated using process-
based models.

Long-term changes of reconstructed water temperatures were
found in terms of significant increases by 0.2 K per decade after 1961
throughout the fishing season and slightly greater increases in spring.
These changes can mostly be attributed to increasing air temperature
which ismost pronounced after 1958. Indirect impacts of rising air tem-
peratures include less snow accumulation and snow melt as well as an
earlier snow melt. The results of the study can provide a robust basis
for future assessments of global change and can help inform decision-
makers about the desirability of enhancing the resilience of rivers and
aquatic ecology towarming. Themethods applied can be used to under-
stand long-term changes in river temperature in other catchments. For
example, the catchment-specific drivers behind increasing river tem-
perature trends in several Scottish catchments over the last thirty
years (Lacout-Bonnamy, 2018) can be investigated using GAMs.

The GAMs produced in this study that explain river temperature
from air temperature, cumulative air temperature, daylength and runoff
are suitable for assessments of future climatic changes and can be com-
bined with process-based modelling approaches, such as to spatially
target mitigation measures.

Our research underlines the value of citizen science for supporting
environmental research which has long been recognised in ecology
(e.g. Isaak et al., 2015) and is becoming a more frequently used
approach to increase temporal and spatial coverage of hydrological
and water quality variables (Kampf et al., 2018; Loiselle et al., 2017;
Weyhenmeyer et al., 2017).
Acknowledgements

We are grateful to the ghillies andmanagement at the Tulchan Club,
Scotland for collecting and providing river temperature and water level
data and Sharon McCaw and Lesley Inkson (James Hutton Institute) for
transcribing the records. Air temperature and precipitation have been
obtained from the UK Met Office and observed river discharge at
Grantown-on-Spey and Boat o' Brig has been provided by the Scottish
Environment Protection Agency (SEPA). We thank three reviewers for
constructive comments which helped improve the manuscript. We
would like to acknowledge Iain McKendrick (Biomathematics and Sta-
tistics Scotland) and Steve Albon (James Hutton Institute) for helpful
comments on an earlier version of the manuscript. We thank Faye L.
Jackson, Iain A. Malcolm (Marine Scotland Science), Keith Johnson,
Stuart Helliwell (Highdown Rodders Fly Fishing Club) and Brian Shaw
(Spey Fishery Board) for fruitful discussions. We are grateful to Mariya
Pavlova who conducted a literature review on the ecological impacts
of river temperature while working voluntarily at the James Hutton
Institute. The project was funded by the Rural & Environment Science
& Analytical Services Division of the Scottish Government.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2018.12.325.
References

Arora, R., Tockner, K., Venohr, M., 2016. Changing river temperatures in northern
Germany: trends and drivers of change. Hydrol. Process. 30, 3084–3096. https://
doi.org/10.1002/hyp.10849.

Arora, R., Toffolon, M., Tockner, K., Venohr, M., 2018. Thermal discontinuities along a low-
land river: the importance of urban areas and lakes. J. Hydrol. https://doi.org/
10.1016/j.jhydrol.2018.05.066.

Baum, D., Laughton, R., Armstrong, J.D., Metcalfe, N.B., 2005. The effect of temperature on
growth and early maturation in a wild population of Atlantic salmon parr. J. Fish Biol.
67, 1370–1380. https://doi.org/10.1111/j.1095-8649.2005.00832.x.

Bolduc, C., Lamoureux, S.F., 2018. Multi-year variations in high Arctic river temperatures
in response to climate variability. Arct. Sci. https://doi.org/10.1139/AS-2017-0053.
Butler, J.R.A., Radford, A., Riddington, G., Laughton, R., 2009. Evaluating an ecosystem ser-
vice provided by Atlantic salmon, sea trout and other fish species in the river Spey,
Scotland: the economic impact of recreational rod fisheries. Fish. Res. 96, 259–266.
https://doi.org/10.1016/j.fishres.2008.12.006.

Caldwell, P., Segura, C., Laird, S.G., Sun, G., McNulty, S.G., Sandercock, M., Boggs, J., Vose,
J.M., 2015. Short-term stream water temperature observations permit rapid assess-
ment of potential climate change impacts. Hydrol. Process. 29, 2196–2211. https://
doi.org/10.1002/hyp.10358.

Carraro, L., Bertuzzo, E., Mari, L., Fontes, I., Hartikainen, H., Strepparava, N., Schmidt-
Posthaus, H., Wahli, T., Jokela, J., Gatto, M., Rinaldo, A., 2017. Integrated field, labora-
tory, and theoretical study of PKD spread in a Swiss prealpine river. Proc. Natl. Acad.
Sci., 1–6 https://doi.org/10.1073/pnas.1713691114.

CEH, 2012. National River Flow Archive. WWW Document. http://nrfa.ceh.ac.uk
(accessed 5.29.18).

Chen, D., Hu, M., Guo, Y., Dahlgren, R.A., 2016. Changes in river water temperature be-
tween 1980 and 2012 in Yongan watershed, eastern China: magnitude, drivers and
models. J. Hydrol. 533, 191–199. https://doi.org/10.1016/j.jhydrol.2015.12.005.

Criss, R.E., Winston, W.E., 2008. Do Nash values have value? Discussion and alternate pro-
posals. Hydrol. Process. 22, 2723–2725. https://doi.org/10.1002/hyp.

Dick, J., Tetzlaff, D., Soulsby, C., 2017. Role of riparian wetlands and hydrological connec-
tivity in the dynamics of stream thermal regimes in the dynamics of stream thermal
regimes. Hydrol. Res. https://doi.org/10.2166/nh.2017.066.

Dugdale, S.J., Malcolm, I., Hannah, D.M., 2017. Stream temperature under contrasting ripar-
ian forest cover: understanding thermal dynamics and heat exchange processes. Sci.
Total Environ. 610–611, 1375–1389. https://doi.org/10.1016/j.scitotenv.2017.08.198.

Elliott, J.M., Elliott, J.A., 2010. Temperature requirements of Atlantic salmon Salmo salar,
brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects
of climate change. J. Fish Biol. 77, 1793–1817. https://doi.org/10.1111/j.1095-
8649.2010.02762.x.

Fabris, L., Malcolm, I.A., Buddendorf, W.B., Soulsby, C., 2018. Integrating process-based flow
and temperature models to assess riparian forests and temperature amelioration in
salmon streams. Hydrol. Process. 32, 776–791. https://doi.org/10.1002/hyp.11454.

Fofonova, V., Zhilyaev, I., Krayneva, M., Yakshina, D., Tananaev, N., Volkova, N., Wiltshire,
K.H., 2016. The water temperature characteristics of the Lena River at basin outlet in
the summer period. Hydrol. Earth Syst. Sci. Discuss., 1–32 https://doi.org/10.5194/
hess-2016-254.

Fox, J., Weisberg, S., Price, B., 2018. car. Companion to Applied Regression. R-Package.
Fullerton, A.H., Burke, B.J., Lawler, J.J., Torgerson, C.E., Ebersole, J.L., Leibowitz, S.G., 2017.

Simulated juvenile salmon growth and phenology respond to altered thermal regimes
and stream network shape. Ecosphere 8, 1–6. https://doi.org/10.1002/ecs2.2052.

Gädeke, A., Hölzel, H., Koch, H., Pohle, I., Grünewald, U., 2014. Analysis of uncertainties in
the hydrological response of a model-based climate change impact assessment in a
subcatchment of the Spree River, Germany. Hydrol. Process. 28, 3978–3998. https://
doi.org/10.1002/hyp.9933.

Gädeke, A., Pohle, I., Koch, H., Grünewald, U., 2017. Trend analysis for integrated regional cli-
mate change impact assessments in the Lusatian river catchments (north-eastern
Germany). Reg. Environ. Chang. 17, 1751–1762. https://doi.org/10.1007/s10113-017-
1138-0.

Garner, G., Malcolm, I.A., Sadler, J.P., Hannah, D.M., 2017. The role of riparian vegetation
density, channel orientation and water velocity in determining river temperature dy-
namics. J. Hydrol. 553, 471–485. https://doi.org/10.1016/j.jhydrol.2017.03.024.

Gray, B.R., Lyubchich, V., Gel, Y.R., Rogala, J.T., Robertson, D.M., Wei, X., 2016. Estimation of
river and stream temperature trends under haphazard sampling. JISS 25, 89–105.
https://doi.org/10.1007/s10260-015-0334-7.

Gregory, S.D., Nevoux, M., Riley, W.D., Beaumont, W.R.C., Jeannot, N., Lauridsen, R.B.,
Marchand, F., Scott, L.J., Roussel, J.M., 2017. Patterns on a parr: drivers of long-term
salmon parr length in U.K. and French rivers depend on geographical scale. Freshw.
Biol. 62, 1117–1129. https://doi.org/10.1111/fwb.12929.

Gunawardhana, L.N., Kazama, S., 2012. Statistical and numerical analyses of the influence
of climate variability on aquifer water levels and groundwater temperatures: the im-
pacts of climate change on aquifer thermal regimes. Glob. Planet. Chang. 86–87,
66–78. https://doi.org/10.1016/j.gloplacha.2012.02.006.

Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean
squared error and NSE performance criteria: implications for improving hydrological
modelling. J. Hydrol. 377, 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003.

Hannah, D.M., Garner, G., 2015. River water temperature in the United Kingdom: changes
over the 20th century and possible changes over the 21st century. Prog. Phys. Geogr.
39, 68–92. https://doi.org/10.1177/0309133314550669.

Hardenbicker, P., Viergutz, C., Becker, A., Kirchesch, V., Nilson, E., Fischer, H., 2017. Water
temperature increases in the river Rhine in response to climate change. Reg. Environ.
Chang. 17, 299–308. https://doi.org/10.1007/s10113-016-1006-3.

Hari, R.E., Livingstone, D.M., Siber, R., Burkhardt-Holm, P., Guttinger, H., 2006. Conse-
quences of climatic change for water temperature and brown trout populations in Al-
pine rivers and streams. Glob. Chang. Biol. 12, 10–26. https://doi.org/10.1111/j.1365-
2486.2005.01051.x.

Helliwell, R.C., Soulsby, C., Ferrier, R.C., Jenkins, A., Harriman, R., 1998. Influence of snow on
the hydrology and hydrochemistry of the Allt a' Mharcaidh, Cairngormmountains, Scot-
land. Sci. Total Environ. 217, 59–70. https://doi.org/10.1016/S0048-9697(98)00165-X.

Imholt, C., Soulsby, C., Malcolm, I.A., Hrachowitz, M., Gibbins, C.N., Langan, S., Tetzlaff, D.,
2011. Influence of scale on thermal characteristics in a large montane river basin.
Limnetica 30, 307–328. https://doi.org/10.1002/rra.

Imholt, C., Soulsby, C., Malcolm, I.A., Gibbins, C.N., 2013. Influence of contrasting riparian
forest cover on stream temperature dynamics in salmonid spawning and nursery
streams. Ecohydrology 6, 380–392. https://doi.org/10.1002/eco.1291.

Isaak, D.J., Luce, C.H., Rieman, B.E., Nagel, D.E., Peterson, E.E., Horan, D.L., Parkes, S.,
Chandler, G.L., 2010. Effects of climate change and wildfire on stream temperatures

https://doi.org/10.1016/j.scitotenv.2018.12.325
https://doi.org/10.1016/j.scitotenv.2018.12.325
https://doi.org/10.1002/hyp.10849
https://doi.org/10.1002/hyp.10849
https://doi.org/10.1016/j.jhydrol.2018.05.066
https://doi.org/10.1016/j.jhydrol.2018.05.066
https://doi.org/10.1111/j.1095-8649.2005.00832.x
https://doi.org/10.1139/AS-2017-0053
https://doi.org/10.1016/j.fishres.2008.12.006
https://doi.org/10.1002/hyp.10358
https://doi.org/10.1002/hyp.10358
https://doi.org/10.1073/pnas.1713691114
http://nrfa.ceh.ac.uk
https://doi.org/10.1016/j.jhydrol.2015.12.005
https://doi.org/10.1002/hyp
https://doi.org/10.2166/nh.2017.066
https://doi.org/10.1016/j.scitotenv.2017.08.198
https://doi.org/10.1111/j.1095-8649.2010.02762.x
https://doi.org/10.1111/j.1095-8649.2010.02762.x
https://doi.org/10.1002/hyp.11454
https://doi.org/10.5194/hess-2016-254
https://doi.org/10.5194/hess-2016-254
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0080
https://doi.org/10.1002/ecs2.2052
https://doi.org/10.1002/hyp.9933
https://doi.org/10.1002/hyp.9933
https://doi.org/10.1007/s10113-017-1138-0
https://doi.org/10.1007/s10113-017-1138-0
https://doi.org/10.1016/j.jhydrol.2017.03.024
https://doi.org/10.1007/s10260-015-0334-7
https://doi.org/10.1111/fwb.12929
https://doi.org/10.1016/j.gloplacha.2012.02.006
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1177/0309133314550669
https://doi.org/10.1007/s10113-016-1006-3
https://doi.org/10.1111/j.1365-2486.2005.01051.x
https://doi.org/10.1111/j.1365-2486.2005.01051.x
https://doi.org/10.1016/S0048-9697(98)00165-X
https://doi.org/10.1002/rra
https://doi.org/10.1002/eco.1291


65I. Pohle et al. / Science of the Total Environment 659 (2019) 53–65
and salmonid thermal habitat in a mountain river network. Ecol. Appl. 20,
1350–1371. https://doi.org/10.1890/09-0822.1.

Isaak, D.J., Young, M.K., Nagel, D.E., Horan, D.L., Groce, M., 2015. The cold-water climate
shield: delineating refugia for preserving salmonid fishes through the 21st century.
Glob. Chang. Biol. 21, 2540–2553. https://doi.org/10.1111/gcb.12879.

Isaak, D.J., Young, M.K., Luce, C.H., Hostetler, S.W., Wenger, S.J., Peterson, E.E., Ver Hoef,
J.M., Groce, M.C., Horan, D.L., Nagel, D.E., 2016. Slow climate velocities of mountain
streams portend their role as refugia for cold-water biodiversity. Proc. Natl. Acad.
Sci., 1–6 https://doi.org/10.1073/pnas.1522429113.

Isaak, D.J., Luce, C.H., Horan, D.L., Chandler, G.L., Wollrab, S.P., Nagel, D.E., 2018. Global
warming of Salmon and Trout Rivers in the northwestern U.S.: road to ruin or path
through purgatory? Trans. Am. Fish. Soc. https://doi.org/10.1002/tafs.10059.

Jackson, F.L., Hannah, D.M., Fryer, R.J., Millar, C.P., Malcolm, I.A., 2017a. Development of
spatial regression models for predicting summer river temperatures from landscape
characteristics: implications for land and fisheries management. Hydrol. Process.
31, 1225–1238. https://doi.org/10.1002/hyp.11087.

Jackson, F.L., Malcolm, I., Jackson, F.L., Fryer, R.J., Hannah, D.M., Malcolm, I.A., 2017b. Can
spatial statistical river temperature models be transferred between catchments?
Hydrol. Earth Syst. Sci. https://doi.org/10.5194/hess-21-4727-2017.

Jackson, F.L., Fryer, R.J., Hannah, D.M., Millar, C.P., Malcolm, I.A., 2018. A spatio-temporal
statistical model of maximum daily river temperatures to inform the management
of Scotland's Atlantic salmon rivers under climate change. Sci. Total Environ. 612,
1543–1558. https://doi.org/10.1016/j.scitotenv.2017.09.010.

Johnson, M.F., Wilby, R.L., Toone, J.A., 2014. Inferring air – water temperature relation-
ships from river and catchment properties. Hydrol. Process. 28, 2912–2928. https://
doi.org/10.1002/hyp.9842.

Joint Nature Conservation Committee, 2016. NATURA 2000 - STANDARD DATA FORM for
Special Protection Areas (SPA), Proposed Sites for Community Importance (pSCI),
Sites of Community Importance (SCI) and for Special Areas of Conservation (SAC)
SITE UK0019811 SITENAME River Spey.

Jonkers, A.R.T., Sharkey, K.J., 2016. The differential warming response of Britain's rivers
(1982-2011). PLoS One (11), 1–23 https://doi.org/10.1371/journal.pone.0166247.

Jonsson, N., 1991. Influence of water flow, water temperature and light on fish migration
in rivers. Nord. J. Freshw. Res. 66, 20–35.

Jonsson, B., Jonsson, N., 2009. A review of the likely effects of climate change on anadro-
mous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular refer-
ence to water temperature and flow. J. Fish Biol. 75, 2381–2447. https://doi.org/
10.1111/j.1095-8649.2009.02380.x.

Kampf, S., Strobl, B., Hammond, J., Anenberg, A., Etter, S., Martin, C., Puntenney-Desmond,
K., Seibert, J., Van Meerfeld, I., 2018. Testing the waters: Mobile apps for
crowdsourced streamflow data. EOS Trans. Am. Geophys. Union 99. https://doi.org/
10.1029/2018EO096355.

Kaushal, S.S., Likens, G.E., Jaworski, N.A., Pace, M.L., Sides, A.M., Seekell, D., Belt, K.T., Secor,
D.H., Wingate, R.L., 2010. Rising stream and river temperatures in the United States.
Front. Ecol. Environ. 8, 461–466. https://doi.org/10.1890/090037.

Kelleher, C., Wagener, T., Gooseff, M., Mcglynn, B., Mcguire, K., Marshall, L., 2012. Investi-
gating controls on the thermal sensitivity of Pennsylvania streams. Hydrol. Process.
26, 771–785. https://doi.org/10.1002/hyp.8186.

Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A., Legg, T., 2018. State of the UK cli-
mate 2017. Int. J. Climatol. 38, 1–35. https://doi.org/10.1002/joc.5798.

Koch, H., Grünewald, U., 2010. Regression models for daily stream temperature simula-
tion: case studies for the river Elbe, Germany. Hydrol. Process. 24, 3826–3836.
https://doi.org/10.1002/hyp.7814.

Koch, H., Vögele, S., Hattermann, F.F., Huang, S., 2015. The impact of climate change and
variability on the generation of electrical power. Meteorol. Z. 24, 173–188. https://
doi.org/10.1127/metz/2015/0530.

Lacout-Bonnamy, T., 2018.Water quality seasonal and long-term trend analysis using STL
decomposition in Scottish catchments. Internship Report. Supervisors: Pohle, I.,
Troldborg, M. (James Hutton Institute), Aliaume, C. (Polytech Montpellier).

Langan, S.J., Johnston, L., Donaghy, M.J., Youngson, A.F., Hay, D.W., 2001. Variation in river
water temperatures in an upland stream over a 30-year period. Sci. Total Environ.
265, 195–207.

Loiselle, S.A., Frost, P.C., Turak, E., Thornhill, I., 2017. Citizen scientists supporting environ-
mental research priorities. Sci. Total Environ. 598, 937. https://doi.org/10.1016/j.
scitotenv.2017.03.142.

Lopes-Lima, M., Sousa, R., Geist, J., Aldridge, D.C., Araujo, R., Bergengren, J., Bespalaya, Y.,
Bódis, E., Burlakova, L., Van Damme, D., Douda, K., Froufe, E., Georgiev, D., Gumpinger,
C., Karatayev, A., Kebapçi, Ü., Killeen, I., Lajtner, J., Larsen, B.M., Lauceri, R., Legakis, A.,
Lois, S., Lundberg, S., Moorkens, E., Motte, G., Nagel, K.O., Ondina, P., Outeiro, A.,
Paunovic, M., Prié, V., von Proschwitz, T., Riccardi, N., Rudzīte, M., Rudzītis, M.,
Scheder, C., Seddon, M., Şereflişan, H., Simić, V., Sokolova, S., Stoeckl, K., Taskinen, J.,
Teixeira, A., Thielen, F., Trichkova, T., Varandas, S., Vicentini, H., Zajac, K., Zajac, T.,
Zogaris, S., 2017. Conservation status of freshwater mussels in Europe: state of the
art and future challenges. Biol. Rev. 92, 572–607. https://doi.org/10.1111/brv.12244.

Lopes-Lima, M., Burlakova, L.E., Karatayev, A.Y., Mehler, K., Seddon, M., Sousa, R., 2018.
Conservation of freshwater bivalves at the global scale: diversity, threats and re-
search needs. Hydrobiologia 810, 1–14. https://doi.org/10.1007/s10750-017-3486-7.

Magoulick, D.D., Kobza, R.M., 2003. The role of refugia for fishes during drought: a review
and synthesis. Freshw. Biol. 48, 1186–1198. https://doi.org/10.1046/j.1365-
2427.2003.01089.x.

Merriam, E.R., Fernandez, R., Petty, J.T., Zegre, N., 2017. Can brook trout survive climate
change in large rivers? If it rains. Sci. Total Environ. 607–608, 1225–1236. https://
doi.org/10.1016/j.scitotenv.2017.07.049.

Moatar, F., Gailhard, J., 2006. Water temperature behaviour in the river Loire since 1976 and
1881. Compt. Rendus Geosci. 338, 319–328. https://doi.org/10.1016/j.crte.2006.02.011.
Mohseni, O., Stefan, H.G., Erickson, T.R., 1998. A nonlinear regression model for weekly
stream temperatures. Water Resour. Res. 34, 2685–2692. https://doi.org/10.1029/
98WR01877.

Mohseni, O., Stefan, H.G., Eaton, J.G., 2003. Global warming and potential changes in fish
habitat in U.S. streams. Clim. Chang. 59, 389–409.

Müller, U., Greis, S., Rothstein, B., 2007. Impacts on water temperatures of selected ger-
man rivers and on electricity production of thermal power plants due to climate
change. Disaster Reduction in Climate Change. Karlsruhe, pp. 8–11.

Murphy, J., Sexton, D., Jenkins, G., Boorman, P., Booth, B., Brown, K., Clark, R., Collins, M.,
Harros, G., Kendon, L., 2010. UK Climate Projections Science Report: Climate Change
Projections.

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I - a
discussion of principles. J. Hydrol. 10, 282–290. https://doi.org/10.1016/0022-1694
(70)90255-6.

O'Gorman, E.J., Ólafsson, Ó.P., Demars, B.O.L., Friberg, N., Guðbergsson, G., Hannesdóttir,
E.R., Jackson, M.C., Johansson, L.S., McLaughlin, Ó.B., Ólafsson, J.S., Woodward, G.,
Gíslason, G.M., 2016. Temperature effects on fish production across a natural thermal
gradient. Glob. Chang. Biol. 22, 3206–3220. https://doi.org/10.1111/gcb.13233.

Parajka, J., Merz, R., Blöschl, G., 2007. Uncertainty and multiple objective calibration in re-
gional water balance modelling: case study in 320 Austrian catchments. Hydrol. Pro-
cess. 21, 435–446. https://doi.org/10.1002/hyp.

Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change.
Annu. Rev. Ecol. Evol. Syst. 37, 637–669. https://doi.org/10.1146/annurev.
ecolsys.37.091305.110100.

Pekarova, P., Miklanek, M., Halmova, D., Onderka, M., Pekar, J., Kucarova, K., Liova, S.,
Skoda, P., 2011. Long-term trend and multi-annual variability of water temperature
in the pristine Bela River basin (Slovakia). J. Hydrol. 400, 333–340. https://doi.org/
10.1016/j.jhydrol.2011.01.048.

Perkins, D.M., Yvon-Durocher, G., Demars, B.O.L., Reiss, J., Pichler, D.E., Friberg, N.,
Trimmer, M., Woodward, G., 2012. Consistent temperature dependence of respiration
across ecosystems contrasting in thermal history. Glob. Chang. Biol. 18, 1300–1311.
https://doi.org/10.1111/j.1365-2486.2011.02597.x.

Pohlert, T., 2018. Trend. Non-Parametric Trend Tests and Change-Point Detection. R-
package. R Packag. https://doi.org/10.13140/RG.2.1.2633.4243.

Prior, M.J., Perry, M.C., 2014. Analyses of trends in air temperature in the United Kingdom
using gridded data series from 1910 to 2011. Int. J. Climatol. 34, 3766–3779. https://
doi.org/10.1002/joc.3944.

Rabi, A., Hadzima-Nyarko, M., Šperac, M., 2015. Modelling river temperature from air
temperature: case of the river Drava (Croatia). Hydrol. Sci. J. 60, 1490–1507.
https://doi.org/10.1080/02626667.2014.914215.

Reid, P.C., Hari, R.E., Beaugrand, G., Livingstone, D.M., Marty, C., Straile, D., Barichivich, J.,
Goberville, E., Adrian, R., Aono, Y., Brown, R., Foster, J., Groisman, P., Hélaouët, P., Hsu,
H.H., Kirby, R., Knight, J., Kraberg, A., Li, J., Lo, T.T., Myneni, R.B., North, R.P., Pounds, J.A.,
Sparks, T., Stübi, R., Tian, Y., Wiltshire, K.H., Xiao, D., Zhu, Z., 2016. Global impacts of the
1980s regime shift. Glob. Chang. Biol. 22, 682–703. https://doi.org/10.1111/gcb.13106.

Spencer, M., 2016. Reanalysis of Scottish Mountain Snow Conditions. The University of
Edinburgh.

Spencer, M., Essery, R., Chambers, L., Hogg, S., 2014. The historical snow survey of Great
Britain: digitised data for Scotland. Scott. Geogr. J. 130, 252–265. https://doi.org/
10.1080/14702541.2014.900184.

Toffolon, M., Piccolroaz, S., 2015. A hybridmodel for river water temperature as a function
of air temperature and discharge. Environ. Res. Lett. 10, 1–22. https://doi.org/
10.1088/1748-9326/10/11/114011.

van Vliet, M.T.H., Franssen, W.H.P., Yearsley, J.R., Ludwig, F., Haddeland, I.,
Lettenmaier, D.P., Kabat, P., 2013. Global river discharge and water temperature
under climate change. Glob. Environ. Chang. 23, 450–464. https://doi.org/10.1016/j.
gloenvcha.2012.11.002.

van Vliet, M.T.H., van Beek, L.P.H., Eisner, S., Flörke, M., Wada, Y., Bierkens, M.F.P., 2016.
Multi-model assessment of global hydropower and cooling water discharge potential
under climate change. Glob. Environ. Chang. 40, 156–170. https://doi.org/10.1016/j.
gloenvcha.2016.07.007.

Verbrugge, L.N.H., Schipper, A.M., Huijbregts, M.A.J., Van der Velde, G., Leuven, R.S.E.W.,
2012. Sensitivity of native and non-native mollusc species to changing river water
temperature and salinity. Biol. Invasions 14, 1187–1199. https://doi.org/10.1007/
s10530-011-0148-y.

Webb, B.W., Nobilis, F., 1994. Water temperature behaviour in the river Danube during
the twentieth century. Hydrobiologia 291, 105–113.

Webb, B.W., Walling, D.E., 1992. Long term water temperature behaviour and trends in a
Devon, UK, river system. Hydrol. Sci. J. 37, 567–580. https://doi.org/10.1080/
02626669209492624.

Webb, B.W., Walsh, A.J., 2004. Changing UK river temperatures and their impact on fish
populations. Hydrol. Sci. Pract. II, 177–191 (21st Century. Vol. II).

Weyhenmeyer, G.A., Mackay, M., Stockwell, J.D., Thiery, W., Grossart, H.-P., Augusto-Silva,
P.B., Baulch, H.M., de Eyto, E., Hejzlar, J., Kangur, K., Kirillin, G., Pierson, D.C., Rusak, J.A.,
Sadro, S., Woolway, R.I., 2017. Citizen science shows systematic changes in the tem-
perature difference between air and inland waters with global warming. Sci. Rep. 7,
1–9. https://doi.org/10.1038/srep43890.

Wood, S., 2018. mgcv (Mixed GAM computation vehicle with automated smoothness es-
timation. R-Package).

Young, M.K., Isaak, D.J., McKelvey, K.S., Wilcox, T.M., Campbell, M.R., Horan, D.L., Schwartz,
M.K., 2017. Ecological segregation moderates a climactic conclusion to trout hybridi-
zation. Glob. Chang. Biol. 0, 1–3. https://doi.org/10.1111/gcb.13828.

Youngson, A.F., Maclean, J.C., Fryer, R.J., 2002. Rod catch trends for early-running MSW
salmon in Scottish rivers (1952–1997): divergence among stock components. ICES.
J. Mar. Sci. 59, 836–849. https://doi.org/10.1006/jmsc.2002.1195.

https://doi.org/10.1890/09-0822.1
https://doi.org/10.1111/gcb.12879
https://doi.org/10.1073/pnas.1522429113
https://doi.org/10.1002/tafs.10059
https://doi.org/10.1002/hyp.11087
https://doi.org/10.5194/hess-21-4727-2017
https://doi.org/10.1016/j.scitotenv.2017.09.010
https://doi.org/10.1002/hyp.9842
https://doi.org/10.1002/hyp.9842
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0195
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0195
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0195
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0195
https://doi.org/10.1371/journal.pone.0166247
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0205
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0205
https://doi.org/10.1111/j.1095-8649.2009.02380.x
https://doi.org/10.1111/j.1095-8649.2009.02380.x
https://doi.org/10.1029/2018EO096355
https://doi.org/10.1029/2018EO096355
https://doi.org/10.1890/090037
https://doi.org/10.1002/hyp.8186
https://doi.org/10.1002/joc.5798
https://doi.org/10.1002/hyp.7814
https://doi.org/10.1127/metz/2015/0530
https://doi.org/10.1127/metz/2015/0530
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0245
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0245
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0245
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0250
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0250
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0250
https://doi.org/10.1016/j.scitotenv.2017.03.142
https://doi.org/10.1016/j.scitotenv.2017.03.142
https://doi.org/10.1111/brv.12244
https://doi.org/10.1007/s10750-017-3486-7
https://doi.org/10.1046/j.1365-2427.2003.01089.x
https://doi.org/10.1046/j.1365-2427.2003.01089.x
https://doi.org/10.1016/j.scitotenv.2017.07.049
https://doi.org/10.1016/j.scitotenv.2017.07.049
https://doi.org/10.1016/j.crte.2006.02.011
https://doi.org/10.1029/98WR01877
https://doi.org/10.1029/98WR01877
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0290
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0290
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0295
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0295
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0295
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0300
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0300
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1111/gcb.13233
https://doi.org/10.1002/hyp
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
https://doi.org/10.1016/j.jhydrol.2011.01.048
https://doi.org/10.1016/j.jhydrol.2011.01.048
https://doi.org/10.1111/j.1365-2486.2011.02597.x
https://doi.org/10.13140/RG.2.1.2633.4243
https://doi.org/10.1002/joc.3944
https://doi.org/10.1002/joc.3944
https://doi.org/10.1080/02626667.2014.914215
https://doi.org/10.1111/gcb.13106
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0355
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0355
https://doi.org/10.1080/14702541.2014.900184
https://doi.org/10.1080/14702541.2014.900184
https://doi.org/10.1088/1748-9326/10/11/114011
https://doi.org/10.1088/1748-9326/10/11/114011
https://doi.org/10.1016/j.gloenvcha.2012.11.002
https://doi.org/10.1016/j.gloenvcha.2012.11.002
https://doi.org/10.1016/j.gloenvcha.2016.07.007
https://doi.org/10.1016/j.gloenvcha.2016.07.007
https://doi.org/10.1007/s10530-011-0148-y
https://doi.org/10.1007/s10530-011-0148-y
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0385
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0385
https://doi.org/10.1080/02626669209492624
https://doi.org/10.1080/02626669209492624
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0395
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0395
https://doi.org/10.1038/srep43890
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0405
http://refhub.elsevier.com/S0048-9697(18)35210-0/rf0405
https://doi.org/10.1111/gcb.13828
https://doi.org/10.1006/jmsc.2002.1195

	Citizen science evidence from the past century shows that Scottish rivers are warming
	1. Introduction
	2. Materials and methods
	2.1. Study area
	2.2. Statistical analysis

	3. Results
	3.1. Long-term changes in observed river temperature
	3.2. Modelling river temperature from relationships with hydrometeorological variables
	3.3. Long-term changes in hydrometeorological variables
	3.4. Long-term changes in modelled river temperature

	4. Discussion
	4.1. Influences on river temperature
	4.2. Long-term changes in river temperature and its drivers
	4.3. Uncertainties
	4.4. Ecological relevance
	4.5. Implications for future change and climate change adaptation measures
	4.6. Conclusion and outlook

	Acknowledgements
	Appendix A. Supplementary data
	References


