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Abstract 8 

The spatial distribution of soil organic carbon is an important factor in land management 9 

decision making, climate change mitigation and landscape planning. In Scotland, where 10 

approximately one-quarter of the soils are peat, this information has usually been obtained 11 

using field survey and mapping, with digital soil mapping only carried out recently. Here a 12 

method is presented that integrates legacy survey data, recent monitoring work for peatland 13 

restoration surveys, spatial covariates such as topography and climate, and remote sensing data. 14 

The aim of this work was to provide estimates of the depth, bulk density and carbon 15 

concentration of Scotland’s soils in order to allow more effective carbon stock mapping. A 16 

neural network model was used to integrate the existing data, and this was then used to generate 17 

a map of soil property estimates for carbon stock mapping at 100 metre resolution over 18 

Scotland. Accuracy assessment indicated that the depth mapping to the bottom of the organic 19 

layer was achieved with an r2 of 0.67, while carbon proportion and bulk density were estimated 20 

with an r2 of 0.63 and 0.79, respectively. Modelling of these three properties allowed estimation 21 

of soil carbon in mineral and organic soils in Scotland to a depth of one metre (3498 megatons) 22 

and overall (3688 megatons). 23 
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Highlights 26 

• Scotland’s soil organic carbon was mapped using a digital soil mapping approach. 27 

• This provides a high-resolution map available for scientists, regulatory bodies and 28 

policymakers. 29 

• The method largely agreed with previous work but improved the spatial resolution of the 30 

mapping. 31 

• Significant soil carbon stocks are held in both organic (peat) and non-peat soils. 32 

1. Introduction 33 

Soil, particularly peat, contains significant quantities of carbon and presents both opportunities 34 

(mitigation through increased carbon storage) and risks (oxidation and GHG release) in relation 35 

to climate change. Peat also provides ecosystem services beyond carbon storage, including 36 

water storage and filtration, and biodiversity support. The management, protection and 37 

restoration of soil is therefore of importance for several environmental and policy reasons. To 38 

achieve appropriate soil carbon management, it is necessary to know where the carbon-rich 39 

soils are, and how much carbon they hold (and at what depth). In Scotland for example, 40 

approximately one-quarter of the country’s surface area is classed as peat soil, but the spatial 41 

distribution and depth of this peat is unknown within existing soil map units. 42 

An understanding of peat depth is also important to know in order to determine peat GHG 43 

emission rates and other properties/functions. Artz et al. (2006) showed that as depth increases, 44 

the microbial cycling of carbon changes in activity, relating to the level of humification in the 45 

peat. Dixon et al. (2017) showed that in deeper peats in North America, depth influences 46 

vegetation response to evaporative stress. Depth within peat also affects fungal community 47 

structure and plant functional group effects (Lamit et al., 2017).  48 
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Peat is defined in various soil classification systems as soil with an organic topsoil deeper than 49 

some defined depth, which varies according to the classification system used. Soil organic 50 

horizon depth data can come from several different sources, including traditional depth 51 

surveys, surveys carried out to assess the effects of peat restoration efforts, and paleoecological 52 

surveys (e.g. Ratcliffe & Payne, 2016). In addition to direct field survey and sampling, other 53 

approaches exist. The use of remote sensing data for delineating peatland areas is an important 54 

component of inventorying peatland carbon stocks (Nicoletti et al., 2003; Sheng et al., 2004) 55 

and is mapped better when used in combination with other covariates and with machine 56 

learning approaches (Minasny et al., 2019). The use of remote sensing and digital soil mapping 57 

approaches for mapping peat presence/absence specifically in Scotland has been previously 58 

demonstrated (Aitkenhead, 2017; Poggio et al., 2019). However, these works did not provide 59 

information on depth or carbon stock per unit area. 60 

Peatland restoration activities in Scotland have, as a requirement for government funding, 61 

carried out grid-based depth and site condition surveys across over 200 peat bogs in order to 62 

provide evidence that peat not only exists at these locations, but that restoration work would 63 

be appropriate. As part of satisfying funding requirements, peat depth information across bogs 64 

must be provided. While estimating peat depth using Ground Penetrating Radar (GPR) can be 65 

carried out in the field and may be more accurate than manual probing (Parry et al., 2014), for 66 

reasons of cost and other practicalities, the manual approach remains the standard for peat depth 67 

survey at multiple points across an area of interest. Because of this, rod-based peat survey 68 

information has been carried out across many peat bogs in Scotland. 69 

Manual soil survey work can provide baseline data for improved mapping of soils. Peat depth 70 

observations can be used to develop maps of estimated depth using spatial statistics and maps 71 

of other factors such as topography that influence the formation and development of peat (e.g. 72 

Rudiyanto Setiawan et al., 2014). Topographic data combined with statistical approaches and 73 
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peat depth survey across a study area can be used to map estimated peat depth (Holden & 74 

Connolly, 2011; Parry et al., 2012). Buffam et al. (2010) also used digital elevation and slope 75 

information to estimate mean depths of small peat basins in Wisconsin in the United States. 76 

Several approaches to the digital mapping of soil properties have been demonstrated, including 77 

regression functions (e.g. ten Caten et al., 2012), decision trees (Illes et al., 2011) and fuzzy 78 

classification (Odgers et al., 2011a, 2011b). One of the most flexible approaches to digitally 79 

mapping soils is the use of neural networks (e.g. Behrens et al., 2006), which are particularly 80 

effective in relating known parameters to unknowns of interest (McBratney et al., 2003). Zhang 81 

et al. (2017) gives a good review of different DSM (digital soil mapping) modelling methods 82 

and highlights recent advances in a number of approaches. They also identify neural networks 83 

as a strong approach in this field with many successes. 84 

Wadoux (2019) used the LUCAS dataset with a neural network approach to produce soil maps 85 

with associated uncertainty estimates, another important factor that was highlighted by Zhang 86 

et al. (2017). Aitkenhead & Coull (2019) found an ANN approach for mapping soil classes in 87 

Scotland and found that even where the model assigned the wrong class, there was greater 88 

probability of it assigning a functionally similar class than one that was totally different. This 89 

indicates that relationships that exist between soil formation factors and soil properties can be 90 

captured within this modelling approach. Wadoux et al. (2019) and Padarian et al. (2019) used 91 

local covariates with a neural network approach to estimate soil properties at multiple depths, 92 

which is necessary in order to estimate soil carbon concentrations down the profile. 93 

Many factors have been demonstrated as proxy indicators of soil properties, in accordance with 94 

the seminal hypotheses of Dokuchaev and Jenny (Florinsky, 2012), and have been used in 95 

DSM. These include vegetation (e.g. Sharma et al., 2006; Ballabio et al., 2012), topography 96 

(Sharma et al., 2006; Bodaghabadi et al., 2011; ten Caten, 2011), geology (Bui & Moran, 2001; 97 

Chagas et al., 2011) and climate (Fujii et al., 2013). 98 
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Digital soil mapping is very dependent on the accuracy and distribution of field data, and all 99 

applications from the field scale (e.g. Quenum et al., 2012) to the continental scale (e.g. 100 

Grunwald et al., 2011) attempt to maximise the effectiveness with which the available field 101 

data is used. The spatial distribution of field data is important not only for providing enough 102 

coverage of soil and relevant environmental properties, but also to allow statistical validity and 103 

robustness to any model developed. 104 

The approach demonstrated here for mapping depth, carbon concentration and carbon stock in 105 

Scottish soils uses neural networks to integrate multiple spatial covariates and uses multiple 106 

data sources including the Scottish Soil Database (Brown et al., 1987; Lilly et al., 2004) and 107 

local peat depth surveys to provide training data. It is also intended to improve on the 108 

information provided by Aitkenhead & Coull (2016) in which soil carbon stocks were mapped 109 

to a depth of 1 metre, by estimating the depth and carbon stock of the full soil profile across 110 

the country. 111 

2. Methods 112 

2.1 Peatland Action survey data 113 

Scottish Natural Heritage (SNH), as the Scottish Government agency responsible for 114 

environmental conservation and habitat protection, provides funding to landowners for 115 

restoration of degraded peatland in Scotland. As part of the funding application process, 116 

landowners must provide spatial information about the peatland to be restored, including a peat 117 

depth survey carried out in a grid across the site. This data is used by SNH as part of the 118 

assessment for awarding restoration funding. 119 

Peat depth survey data for over 200 sites (the work is ongoing with additional sites added 120 

frequently) across Scotland was collated by SNH and made available for this peat depth 121 

mapping work. As of August 2018, there were over 10000 depth values. Landowners were 122 
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required to provide this data in a specific format and using standard measurement techniques 123 

(e.g. 100 metre grid, use of marked rods). Further information about the assessment protocols 124 

and requirements are given at www.nature.scot/peatlandaction. 125 

2.2 National Soil Inventory of Scotland data 126 

The National Soils Inventory of Scotland (NSIS) datasets contain soil and site data taken 127 

from 10 km and 20 km sampling grids across Scotland (Lilly et al., 2010), with samples taken 128 

at different depths from multiple horizons in each profile. Soil types included in the dataset 129 

were peats/histosols, gleys, podzols, immature soils (alluvial, lithosols, rankers) and brown 130 

earths/cambisols. Sample analysis included organic carbon content and bulk density, along 131 

with depth down the profile. Maximum profile depth data used for these datasets was 250 cm. 132 

2.3 Additional Scottish soil data 133 

The Scottish Soil Database, of which the NSIS data is part, contains information from many 134 

additional soil survey campaigns going back as far as the 1940s. Each data point also contains 135 

the coordinates, in the UK Ordnance Survey grid reference system, at which the sample was 136 

taken. These coordinates were used to determine environmental parameters at each location, 137 

from several different datasets (see below).  138 

The Scottish Soil Database was explored for sample data that provided depth, organic carbon 139 

or bulk density information. Criteria for selection were that the analytical method used was 140 

included and that the location information was considered accurate within 100 metres of that 141 

given. Combined with the Peatland Action and NSIS data, this gave a dataset with 10141 142 

specific values of depth to bottom of organic soil material, 1527 values for bulk density (311 143 

from peat) and 27833 values of organic carbon (with large/coarse fragments removed prior to 144 

sampling). In Section 2.5, further description is given of how this data was split into subsets 145 

for training in a manner designed to avoid overfitting from using neighboring sample points. 146 

http://www.nature.scot/peatlandaction
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Figure 1 shows box plots of the distribution in values for the three variables of interest, while 147 

Figure 2 shows the distribution of survey points across Scotland that were used in this work, 148 

separated by dataset used. 149 

 150 

Figure 1. Box plots of profile depth (A), bulk density (B) and organic carbon (C) for the datasets 151 

used. 152 

 153 

Figure 2. Distribution of survey points used in this work: (A) NSIS data, (B) other Scottish Soil 154 

Database data, (C) Peatland Restoration data. 155 

2.4 Spatial covariates 156 

The following spatial datasets were used for mapping the three soil properties, both in 157 

generating training data for the model and for mapping soil organic carbon once the model was 158 

trained: 159 

• Ordnance Survey 50 m resolution Panorama DEM (Digital Elevation Model). 160 

• Land Cover Map 2007 25 m resolution (LCM2007) (Morton et al., 2011). 161 

• Land Cover of Scotland 1:25 000 scale (LCS88) (Macaulay Land Use Research Institute, 162 

1993). 163 

• Soil Map of Scotland at 1:250 000 scale, providing information on the percentage presence 164 

of Major Soil Group (12 classes) within soil mapping units. 165 

• Monthly mean temperature and rainfall data derived from UK Meteorological Office data. 166 

This was taken from 1460 Meteorological Office Stations from 1941 to 1970 interpolated 167 

to a 100 m resolution across Scotland (Matthews et al. 1994; Lilly & Matthews, 1994), using 168 

a combination of stepwise multiple linear regression followed by residual kriging. 169 
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• Geological class at 1:250 000, derived from parent material information on soil mapping 170 

units in the Scotland Soil Map. 171 

• Landsat 8 data (30-60 metre resolution, depending on spectral band), used to generate a 98% 172 

cloud-free coverage of Scotland, captured during June and July 2017. This data was 173 

downloaded for free from the USGS data transfer service. Individual band values were used 174 

rather than indices, to allow the neural network model to identify suitable combinations of 175 

bands. 176 

From the DEM, a total of 7 further topographic spatial datasets were generated. These included 177 

slope, overall curvature (second derivative of the DEM), profile curvature (in the direction of 178 

maximum slope) and plan curvature (perpendicular to the direction of maximum slope), aspect, 179 

aspect from North and aspect from East. These last two are the minimum angle between the 180 

actual aspect and North and East, respectively, and provide values for aspect that do not have 181 

a large numerical discontinuity between values slightly east and slightly west of North (i.e. to 182 

avoid 0°being the same as 360°). 183 

The reason for using two land cover maps was that while the LCS88 is considered extremely 184 

accurate for land cover in 1988, it is now over thirty years old and land cover will have changed 185 

since it was produced. The LCM2007 dataset, while being more recent, is not considered as 186 

accurate for Scotland, particularly for grassland, heath and peat land cover types. For the 187 

LCM2007 and LCS88 datasets, a reduced categorisation was generated with only 10 classes, 188 

which allowed a separate map to be generated for each class type for the two land cover maps. 189 

The broad categorisation of land cover that was used was selected to allow both LCM2007 and 190 

LCS88 maps to be translated easily and consistently, and included the following categories: 191 

arable, improved grassland, rough grassland, heath, peat, bare ground, water, montane, 192 

coniferous forest and deciduous forest. Classes were selected largely based on definitions in 193 

the LCM2007 dataset, and in most cases the definition of the corresponding LCS88 class being 194 
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assigned had an identical or near-identical definition. For heath and peat classes, some 195 

adjustment of the mapping to match the two systems was required. Also from the soil map 196 

information, we produced a map of parent material that contained 19 parent material types. 197 

Each of the above spatial datasets was resampled to 100 metre resolution. Where a spatial 198 

dataset had a coarser spatial resolution than 100 metres (e.g. temperature and rainfall monthly 199 

means), it was subsampled and smoothed linearly between the existing points. Where a dataset 200 

had finer resolution than 100 metres (e.g. the land cover maps), the nearest cell to each 100 201 

metres location was selected and used to represent that grid cell. 202 

2.5 Neural network modelling 203 

Backpropagation neural network (NN) models (Bishop, 1995) were developed to estimate soil 204 

properties based on input parameters. This network design had two hidden layers with ten 205 

nodes each and used a gradient descent value of 0.05. The number of hidden layers was set to 206 

two as we have found through previous experience that this provides better accuracy than 207 

having one layer and that three layers do not provide much improvement but adds to the 208 

computational cost. The activation of each node was calculated using a sigmoid function. 209 

The number of input nodes X equalled the number of input parameters that exist in the training 210 

dataset, and the number of output nodes Y equalled the number of output parameters. All input 211 

parameters were normalised to lie within the range [0, 1], while the output parameters were 212 

normalised to lie within the range [0.25, 0.75]. This was done to avoid the need for extremely 213 

large node activation values due to the sigmoid function. Training steps were set at 100,000 214 

after trial and error to find the best validation accuracy. 215 

Model calibration was carried out using a k-fold cross-validation approach, with the full dataset 216 

split into 13 approximately equally sized subsets at random. Ten of these subsets were used for 217 

model testing in the standard 10-fold cross-validation approach (nine subsets used for training 218 
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and one for testing, with this process repeated ten times). The remaining three subsets were 219 

used for validation using an ensemble of the ten trained models, with the mean of each output 220 

across ten models used to provide estimated values. 221 

As the Peatland Action peat depth data came from clustered sampling areas, a further 222 

preprocessing step for the profile depth estimate was carried out when data points were 223 

assigned to one of the 13 subsets. When one data point was randomly assigned to a subset, all 224 

the data points from the same restoration site were included in that subset. This was done to 225 

ensure that model performance was not biased by testing models using data points that were 226 

spatially correlated with the training data. This will not remove all of the spatial correlation 227 

that exists within the dataset but as the sites are distributed across the whole of Scotland, it was 228 

assumed that it would minimize the effects of spatial correlation. 229 

Subset clustering restrictions were also placed on the organic carbon and bulk density datasets 230 

to ensure that all the values from one soil profile were kept within the same subset. 231 

Additionally, data from profiles that were within 1000 metres of one another were also put into 232 

the same subset. This was done for the same reason as the clustering of the peat depth data, to 233 

avoid biasing the models. Analysis of the spatial autocorrelation of the three modelled variables 234 

gave the following semivariograms: depth (nugget = 13.3, range = 1600 m, sill = 54.6); bulk 235 

density (nugget = 0.12, range = 1500 m, sill = 0.39), organic carbon (nugget = 3.2, range = 900 236 

m, sill = 10.8). For each variable, the semivariance at 1000 m was greater than 80% of the sill 237 

value determined, and so it was assumed that clustering values within 1000 m of one another 238 

was valid. 239 

Prior to model training, all input and output variables were normalized to the range [0, 1] and 240 

then transformed using a power function selected to minimize the variance in histogram bucket 241 

size. This was done in order to reduce skewing in the population distribution of variables and 242 

used ten equally sized histogram buckets for each variable. Post-training, validation data 243 
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estimates were transformed in reverse to achieve a similar population distribution and range of 244 

values as the training data. The effect of this was to train the models using data that was closer 245 

to being normally distributed, while still providing modelled estimates whose distribution 246 

reflected that of the properties studied. No analysis was carried out on the effects of 247 

transforming and back-transforming the data in this way, in terms of outliers or distribution 248 

tails. 249 

Three NN models were developed, for (1) organic layer thickness, (2) carbon concentration 250 

and (3) bulk density. For the carbon content and bulk density models, depth was included as 251 

an input in order to model variation of these properties down the profile. The reasons for having 252 

separate models for carbon content and bulk density was that not all sample points had both 253 

variables measured, and that we found in practice that combining the two outputs within one 254 

NN model produced lower accuracy. Efforts to maintain correlation between these two 255 

properties (i.e. lower bulk density for higher carbon content) were not made, and as is shown 256 

in the Results, this did lead in some geographical locations to localized issues of high bulk 257 

density and high carbon content estimates.  258 

2.6 Analysis of results 259 

For each output variable, statistical evaluation of model performance was carried out using r2, 260 

RMSE (Root Mean Square Error), MAE (Mean Absolute Error) and RPIQ (Ratio of 261 

Performance to Interquartile distance). RPIQ (Minasny & McBratney, 2013) was used as a 262 

useful additional metric to replace RPD, which is correlated with r2 for large datasets and so 263 

therefore less useful. 264 

2.7 Mapping and interpretation 265 

The trained ensemble models were used to produce maps of bulk density, carbon concentration 266 

and peat depth. Values were calculated by taking the mean of all ten models that were 267 
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individually trained as described above. Depth of organic layer was calculated as extending to 268 

where the carbon proportion became lower than a value of 20%. Definitions of various organic 269 

horizons differ in the WRB soil classification system between 12% and 20% carbon 270 

concentration, and this relatively high value was chosen as it was judged to match the Scottish 271 

soil classification system definition of organic soil most closely. 272 

Estimates of carbon content and bulk density were made in 5 cm increments down the profile, 273 

to a maximum depth of 10 metres. At each increment, carbon proportion (the proportion of the 274 

soil that is carbon by weight) and soil bulk density estimates were used to calculate carbon 275 

stock density in kg per square metre for that 5 cm layer. These values were summed to provide 276 

estimates of carbon stock per square metre for both the organic layer and the full profile. This 277 

also enabled peat presence/absence to be modelled by using the threshold of 50 cm organic 278 

layer thickness which is used to discriminate peat from other soils using the Scottish soil 279 

classification system.  280 

Model estimates were produced using the neural network models by using the spatial covariate 281 

datasets previously described at 100 metre resolution.  282 

3. Results 283 

3.1 Spatial covariates 284 

Values for spatial covariates at the sample locations covered all or close to the full range found 285 

in the Scottish landscape. Table 1 lists these and their min/max values. Optimized power 286 

function transformation of the input variables as described above showed that many of the 287 

variables had skewed distributions (e.g. elevation which was skewed towards lower values). 288 

The normalization process produced variable distributions that were much more evenly 289 

distributed than pre-normalization, with a lower standard deviation in range populations. 290 

Table 1. Spatial covariate value ranges at sample locations. 291 
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*Monthly mean 292 

 293 

3.2 Model evaluation 294 

Table 2 shows the statistical evaluation of the three NN models. Bulk density was modelled 295 

most accurately, both in terms of r2 and RPIQ (for which it is common to take values above 2 296 

as ‘good’ although this does not have a mathematical or statistical basis). Values for all three 297 

output variables had non-normal distributions, with depth skewed towards smaller values and 298 

both carbon and bulk density having bimodal distributions (lots of low and high values, but 299 

fewer mid-range values). Bulk density was also correlated with depth, which may explain the 300 

higher accuracy of this model (possibly because of the factor of load weight causing increased 301 

compression with depth). 302 

Table 2. Validation statistics for depth, carbon content and bulk density models. 303 

 304 

It is important to note that while the RMSE value for organic profile depth estimation is high 305 

overall, the RMSE for depths less than 200 cm is much smaller at only 18.8 cm. Of the 10141 306 

depth data points used, 86% had depth shallower than 200 cm. This means that estimates of 307 

carbon stock deeper than 200 cm depth are less reliable, but also that they have less impact on 308 

the total C (carbon) stock estimate. 309 

In calculating carbon stock for a location and depth, it is difficult to estimate C stock error as 310 

carbon and bulk density are to some extent correlated to one another. Figure 3 gives a 311 

diagrammatic representation of the error rates for the carbon and bulk density models, showing 312 

where carbon stock error rates are likely to be low, medium or high for different ranges of 313 

carbon and bulk density. The error rate range given is as a percentage of the estimated value in 314 

each case and is derived from an evaluation of the error distributions in the model outputs. 315 
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These error distributions are not the same across all values of the modelled values, possibly 316 

due to the number of examples within each value range, or to factors not considered in the 317 

modelling that influence soils of different types. 318 

 319 

Figure 3. Representation of likely error ranges and estimated likelihoods of occurrence for 320 

different carbon proportion and bulk density combinations. 321 

3.3 Mapping 322 

Maps of peat depth and total soil profile depth are shown in Figure 4. The legend in each case 323 

is not linear but used the ‘standard deviation’ distribution in ESRI ArcMap 10.1. Deeper soil 324 

profiles in the Flow Country (northern mainland) and Lewis (northern Outer Hebrides) are 325 

associated with deeper peat depth. Soils in western parts of mainland Scotland however have 326 

predominantly shallower full profile depths than in the east of the country, despite having 327 

deeper peat profiles. This indicates that in the west of Scotland, soil organic horizons tend to 328 

make up a greater proportion of each soil profile. 329 

Eastern Scotland is predominated by flatter topography and a drier climate with mineral, 330 

agricultural soils derived from Brown Earths (Cambisols) and Gleys. Meanwhile, western 331 

Scotland has a higher proportion of steep slopes and high elevations with a wetter climate, 332 

meaning shallower soils with more organic matter as stated above. 333 

 334 

Figure 4. Maps of peat depth (A) and total profile depth (B) for Scotland. 335 

Figure 5 shows maps of carbon stock calculated in the surface 5 cm, and in the depth range 45-336 

50 cm. These were calculated for each depth range by multiplying the bulk density (g cm-3) 337 

and carbon concentration (percentage divided by 100 or g g-1) at that depth and location to 338 
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obtain a carbon density in units of g cm-3. This was then converted, using a 5 cm thickness 339 

layer (500 m3 ha-1) in units of kg ha-1. 340 

These two maps for different depths show dramatic differences in the distribution of low and 341 

high carbon stock density. At the surface layer, east coast and Central Belt areas have areas 342 

with much higher carbon stocks despite these soils being predominantly mineral because they 343 

have a high topsoil bulk density (values around 1.5 g cm-3 are common). 344 

This means that even for a relatively low topsoil organic matter content for Scotland (5%), 345 

carbon stock values for these soils tend to be greater than the relatively low-density organic 346 

soils near the surface. Additionally, for a large proportion of the year, arable soils contain a 347 

large amount of crop roots in the top few centimeters, which is included in the organic carbon 348 

stock estimate. 349 

At 45-50 cm depth however, the soils with the greatest stock density are the peaty podzols and 350 

peats of western Scotland, while the arable soils of the east coast have very little carbon at this 351 

depth. Deep peats in the Outer Hebrides (the island chain off the north-west coast) and the far 352 

north of Scotland have intermediate carbon stock density at this depth range, as their bulk 353 

density is still lower than the organomineral peaty podzols. The very high values represented 354 

in Figure 5 are outliers; most of the values even in high C stock areas are less than 50,000 kg 355 

ha-1 per 5 cm layer. 356 

 357 

Figure 5. Maps of carbon stock per hectare at (A) 0-5 cm and (B) 45-50 cm depth. 358 

Figure 6 shows the maps of carbon stock per hectare at 95-100 cm and 195-200 cm. These 359 

maps (particularly for the deeper layer) show large areas in white where the profile is modelled 360 

as not reaching to this depth. Where there is peat however, the larger C stock values per hectare 361 

are approximately the same as for shallower layers. At 100 cm, the greatest contribution to soil 362 
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C stocks is from the Outer Hebrides, the Flow Country (northern mainland) and the Shetland 363 

Isles (far north). There are some isolated pockets of deep peat in other areas, but these are 364 

relatively small. At 200 cm, the greatest contribution is from the Flow Country and the western 365 

islands – there is soil carbon scattered around the country in other places at this depth, but the 366 

stock density is relatively low. 367 

 368 

Figure 6. Maps of carbon stock per hectare at (A) 95-100 cm and (B) 195-200 cm depth. 369 

Figure 7 shows total carbon stock to 100 cm depth for peats and for all soils. Large areas on 370 

map (A) are white because there is no peat, and these correspond in map (B) to large areas of 371 

low carbon stock. However, there are significant increases in the north and west of the country 372 

where carbon stock has fewer gaps when all soils are included (Fig. 6B). At 1 metre depth for 373 

example, the Isle of Skye shows up as having a large proportion by area of high peat carbon 374 

stock in Fig. 6A in comparison to nearby mainland areas, while for all soils (Fig 6B) this area 375 

of high carbon stock also extends across Lochaber (far west mainland) and the larger islands 376 

just west of Lochaber. 377 

 378 

Figure 7. Maps of total carbon per hectare to 100 cm in (A) peat and (B) all soils. 379 

In Figure 8, maps of total peat and total soil carbon per hectare are shown. These include the 380 

full profile depth as modelled. While the distribution of peat soils in Figure 8 is the same as in 381 

Figure 7, the maximum and distribution of values is noticeably different. Deeper peats in the 382 

Flow Country, Outer Hebrides and south-west of Scotland have added more carbon than soils 383 

in Lochaber and Mull, which are modelled as generally being between one and two meters in 384 

depth. 385 



17 
 

The maximum carbon stock density per hectare also increases greatly from Figure 7 to Figure 386 

8, due to small areas of very deep peat. The Flow Country and northern Outer Hebrides (Isle 387 

of Lewis) also have much more carbon stock values when looking at the full profile. It is 388 

important to note that the small difference between maximum peat carbon stock and total soil 389 

maximum carbon stock are due to the presence of some soil carbon below the peat profile 390 

depth. 391 

 392 

Figure 8. Maps of (A) total peat carbon and (B) total soil carbon per hectare. 393 

3.4 Carbon stock variation with depth 394 

In Figure 9, the values of carbon stock per 5 cm layer across the whole of Scotland are given, 395 

for peat, non-peat (mineral soils) and all soils. In the Scottish soil terminology, soils are 396 

organic, organomineral (having an organic topsoil that is less than 50 cm thick) or mineral – 397 

here all non-peat soils are referred to as mineral. These show that at depths below 40 cm, non-398 

peat soils contribute more carbon to the total soil C stock than peats, but that this contribution 399 

from non-peat soils drops rapidly with depth and is negligible below approximately 80 cm. As 400 

the technical definition of peats in Scotland is that they have an organic layer thicker than 50 401 

cm, this partially explains this reduction in contribution from non-peat soils at around this depth 402 

– if the organic layer is deeper than 50 cm that soil is defined as peat and is not included in the 403 

‘non-peat’ contribution. 404 

The contribution from peats continues to increase up to 60 cm depth, after which it also falls 405 

rapidly. This is because while most peats are deeper than 60 cm, the proportion within each 406 

depth range decreases with depth. It tails off more gradually than for non-peat soils, but after 407 

150-200 cm is also considered negligible. This agrees with the information shown in Figure 6, 408 

where soil C stocks at 200 cm are from many very small areas of deep peat. 409 
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 410 

Figure 9. Graph at 5 cm depth increment showing total soil carbon, peat soil carbon and non-411 

peat soil carbon in 5 cm layers to 200 cm depth. 412 

The total carbon in peat soils is calculated as 1889 MT (1719 MT to 100 cm and 1883 MT to 413 

200 cm), and that in non-peat soil is calculated as 1799 MT (1779 to 100 cm and 1797 MT to 414 

200 cm). This gives a total soil carbon estimate for Scotland of 3688 MT (3498 MT and 3680 415 

MT to 100 and 200 cm respectively). The total area estimated as peat is 23958 km2, which is 416 

29.1% of Scotland’s surface area (compared to the estimate of 22.4% by Chapman et al., 2009). 417 

4. Discussion 418 

The profile depth, carbon concentration and bulk density models developed were considered 419 

sufficiently accurate to allow estimates of carbon stock with depth, and to produce maps of this 420 

stock at 100 metre resolution across Scotland. Combining survey datasets from different 421 

sources made it possible to do this through a neural network modelling approach. 422 

The peatland restoration survey data is important as it provides depth information for many 423 

peatland locations. The existing Scottish Soils Database has several hundred data points for 424 

peat but not enough to provide a representative sampling of Scotland’s peat soils for modelling 425 

purposes. One issue with the restoration survey data however is that it may be biased towards 426 

sites that require restoration; if true, these sites are more likely to be degraded. While peat 427 

degradation does not always imply carbon loss, it can if the degradation has led to erosion and 428 

therefore loss of carbon and therefore depth. It is possible therefore that deep peat values have 429 

been underestimated. Certainly, there is anecdotal evidence and a small number of physical 430 

observations in some datasets for deep peat depths greater than 10 meters in Scotland. 431 

The three datasets used have different spatial distributions, numbers of points and depth ranges. 432 

Because of this, there may be some impact on model accuracy for different soil types or areas 433 
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of Scotland. The NSIS data is distributed evenly in a spatial grid (Figure 2A) and so therefore 434 

can be assumed to provide a good representation of the range of values seen for soil carbon and 435 

bulk density, but there are very few profiles in this dataset that go deeper than 1 metre and in 436 

practice, some profiles that were deeper than 1 metre were not explored below this depth. 437 

However, while this potentially biases any model, the reality of Scotland’s soils is that the vast 438 

majority of them are shallower than 1 metre (71% are recorded in the NSIS 10-km grid dataset 439 

as having rock within 1 metre of the surface) and so this is not likely to be causing much of a 440 

problem. Profiles deeper than 1 metre are nearly always peat (over 99% of those in the NSIS 441 

dataset and all the Peatland Restoration data) so the data is considered to provide a reasonable 442 

distribution of values for this soil type and the modelling carried out. 443 

The other Scottish Soil Database profile data used in this work is concentrated in lowland, 444 

commonly agricultural areas (Figure 2B). It therefore provides more data on soils of high bulk 445 

density and low carbon content, on lower altitude and in warmer, drier climates than the mean 446 

for Scotland. This potential bias is assumed to have been at least partially corrected for in the 447 

dataset normalisation process described in the methodology but may still have biased the 448 

environmental data used in the model to be more accurate for these types of conditions. The 449 

Peatland Restoration data may have partially countered this by providing a bias towards cool, 450 

wet climatic areas and flat slopes at higher elevations. Arguably therefore, the environmental 451 

conditions least represented within the model training is steeper slopes, as only the grid-based 452 

NSIS sampling system will have captured the representative slope distribution for Scotland. It 453 

is therefore possible that the model is less accurate on steep slopes than flat ones. 454 

The models developed are considered to have given good estimates of bulk density and 455 

moderately good estimates of profile depth and soil carbon concentration. A visual evaluation 456 

of the mapped results was also carried out by overlaying colour-coded maps of C and bulk 457 

density produced by the model and spending time scrolling through this zoomed map. This 458 
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(admittedly subjective) analysis showed some areas on the west coast of Scotland where bulk 459 

density and C proportion did not appear to match; for a small number of examined locations 460 

both bulk density and C were high in the top 50 cm. As soil C and bulk density are inversely 461 

correlated, this was not realistic and as mentioned in the Methodology, is likely due to having 462 

separate models for C and bulk density. However, for most locations and depths examined, the 463 

values of C and bulk density made sense in relation to one another. 464 

The total area of peat estimated (23958 km2) is higher than previous estimate of 19000 km2 465 

(Chapman et al., 2009). A lot of this difference appears to be due to soils in western Scotland 466 

that are estimated as having organic profile depth just over 50 cm deep, and thus being classed 467 

as peats. In existing maps of Scottish soils, this area is dominated by peaty gleys and peaty 468 

podzols rather than peats, and further work should be carried out to evaluate this discrepancy 469 

between legacy mapping and the current work. 470 

An important piece of information that has not been fully addressed here is the uncertainty 471 

associated with the estimates of soil carbon stock at each location. There is also uncertainty 472 

around the area of peat, linked to estimates of depth which may be producing false negatives 473 

or false positives. This uncertainty can be quantified using multiple runs of the same model 474 

(e.g. Poggio & Gimona, 2014), runs of multiple model approaches (Poggio et al., 2019; Poggio 475 

et al., 2018) or statistical evaluation of the sample data used for the mapping (e.g. Odgers et 476 

al., 2015). However, this quantification is highly dependent on the approach used to determine 477 

the uncertainty (and the actual definition of the uncertainty itself), and the author does not feel 478 

that this area has been tackled sufficiently in the Digital Soil Mapping domain. 479 

The estimates of total soil carbon to 1 metre depth are close to existing estimates (2954 MT for 480 

Aitkenhead & Coull (2016) vs. 3498 in this work). Chapman et al. (2009) estimated total peat 481 

carbon at 1610 MT compared to this estimate of 1889 MT. Estimates in the literature for total 482 

soil carbon stocks to 1 metre include 2187 MT (Bradley et al., 2005), 2055 MT (Chapman et 483 
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al., 2013) and ~3000 MT (Campbell et al., 2012). The Scottish Government states on the 484 

Scotland’s Soils website that “Scotland’s soils contain more than 3000 million tonnes of 485 

carbon”, with this information coming from the State of Scotland’s Soils Report in 2011 486 

(Dobbie et al., 2011).  487 

The greater contribution of soil carbon stocks near the surface from non-peat soils indicates 488 

that while peat restoration and conservation is vital, vulnerable mineral soils should also be 489 

monitored and protected. Carbon closer to the surface is inherently more vulnerable to a range 490 

of natural processes and human activities, and so is more likely to be lost. North-west and 491 

south-west Scotland have large areas of carbon-rich soils that are not technically peat due to 492 

having an organic topsoil less than 50 cm deep, and these soils hold a significant amount of 493 

Scotland’s carbon stocks. 494 

While this work is potentially useful in providing improved resolution mapping of Scotland’s 495 

soil carbon stocks, there are ways in which the work could be improved. First and foremost is 496 

that of spatial resolution; even a 100 metre grid cell size will miss a lot of small peat ‘pockets’ 497 

that should be factored into local land management decision-making. The overall model 498 

accuracy should be improved, particularly that of profile (and organic profile) depth. While 499 

errors in estimation of depth of deep peat (>2 metres) are arguably less important as these areas 500 

do not contribute significantly to Scotland’s soil carbon stock, the estimation of organic profile 501 

depth for shallower peats should be improved. 502 

Building on this work and acknowledging that greater accuracy is important, it is also vital to 503 

recognize that of even greater urgency is the need to make effective use of this kind of data. 504 

Legislation and advice for land managers should be improved to ensure that soil carbon stocks 505 

are restored and protected, and that land managers are aware of the multiple benefits accrued 506 

from large soil carbon stocks. 507 
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Table Captions 665 

Table 1. Spatial covariate value ranges at sample locations. 666 

Table 2. Validation statistics for depth, carbon content and bulk density models. 667 

 668 
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Tables 670 

Covariate Minimum Maximum Covariate Minimum Maximum 

Elevation /m 0 1237 Soil type (%) 0 100 

Curvature -1.62 1.50 Temp (°C)* -2.2 16.5 

Slope /° 0 40.42 Rainfall (mm)* 32 477 

Aspect /° 0 359.68 Geology All types All types 

Land cover All types All types    
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Variable Min Max r2 RMSE MAE RPIQ 

Depth /cm 0 1000 0.67 58.3 42.5 1.69 

Carbon /% 0.01 70.84 0.63 8.1 5.4 2.13 

Bulk density /g cm-3) 0.05 1.80 0.79 0.17 0.11 4.62 

 672 
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Figure captions 674 

Figure 1. Box plots of profile depth (A), bulk density (B) and organic carbon (C) for the datasets 675 

used. 676 

Figure 2. Distribution of survey points used in this work: (A) NSIS data, (B) other Scottish Soil 677 

Database data, (C) Peatland Restoration data. 678 

Figure 3. Representation of likely error ranges and estimated likelihoods of occurrence for 679 

different carbon proportion and bulk density combinations. 680 

Figure 4. Maps of peat depth (A) and total profile depth (B) for Scotland. 681 

Figure 5. Maps of carbon stock per hectare at (A) 0-5 cm and (B) 45-50 cm depth. 682 

Figure 6. Maps of carbon stock per hectare at (A) 95-100 cm and (B) 195-200 cm depth. 683 

Figure 7. Maps of total carbon per hectare to 100 cm in (A) peat and (B) all soils. 684 

Figure 8. Maps of (A) total peat carbon and (B) total soil carbon per hectare. 685 

Figure 9. Graph at 5 cm depth increment showing total soil carbon, peat soil carbon and non-686 

peat soil carbon in 5 cm layers to 200 cm depth. 687 
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