Characterisation and transgenic modification of carotenogenesis during tuber development and storage in potato

Wayne Morris1, Laurence Ducruey1, Wynne Griffiths1, Derek Stewart1, Howard Davies1, Glenn Bryan1, Pete Hedley2, Steve Millam2, Mark Taylor1

1Quality, Health and Nutrition, 2Gene Expression, 3Genome Dynamics Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK. e-mail mtyloy@scri.sri.ac.uk tel: +44 1382 562731 fax: +44 1382 562426

Introduction

As the World’s 4th most important source of calories, the nutritional quality of potato tubers is an area of key interest to plant scientists. The health benefits of different carotenoids in potato tubers assume more significance.

Carotenoids in potato tubers

Several studies have characterised tuber carotenoid content from a range of potato germplasm and shown that Solanum tuberosum and Solanum phureja exhibit a wide (over 20-fold) variation in tuber carotenoid content (Brown et al., 1993, Lu et al., 2001). The total tuber carotenoid content in some Solanum stenotomum × Solanum phureja crosses reached up to 1435 µg/100g FW compared with typical carotenoid content of ca. 10,000 µg/100g FW in carrot taproot (Simon and Wolff, 1987). Tuber carotenoid content in Solanum tuberosum cultivars has also been measured (Breithaupt and Barbedi, 2002; Iwanzic, 1983). For example yellow-fleshed cultivars contain 58-175 µg/100g FW carotenoid and while fleshed cultivars contain 26-62 µg/100g FW carotenoid. The main carotenoids of Solanum tuberosum tubers are violaxanthin, antheraxanthin, lutein and zeaxanthin although the ratios of these carotenoids vary between cultivars. Carotenoid esters in tubers from some S. tuberosum cultivars can reach significant levels (up to 131 µg/100g FW Breithaupt and Barbedi, 2002).

Expression profiling

In order to explore reasons for the wide variation in tuber carotenoid content, the expression patterns of the major genes encoding the enzymes of the carotenoid biosynthetic pathway were compared. Significant differences in the profiles were detected, suggesting that transcriptional control or mRNA stability gives rise to the large differences in tuber carotenoid content. In particular, there was an inverse trend between the level of zeaxanthin epoxidase transcript level and tuber carotenoid content in a range of potato germplasm.

The inverse relationship between the level of zeaxanthin epoxidase and total tuber carotenoid content reflects the effects of down-regulation of zeaxanthin epoxidase reported by Romer et al., 2002 - a major stimulation of the entire carotenogenic pathway. Does this reflect an attempt by the plant to maintain homeostasis in the level of carotenoids and apocarotenoids downstream of zeaxanthin ?

Results

The levels of carotenoids during tuber development and storage were compared in a high carotenoid accumulating S. phureja accession (DB375/1) with two S. tuberosum cultivars (Pentland javelin and Desiree) that accumulate lower levels of tuber carotenoid. In S. phureja tubers at maturity the major carotenoids were zeaxanthin, antheraxanthin and violaxanthin. Following 9 months storage at 4°C the levels of zeaxanthin and antheraxanthin decreased whereas the level of lutein increased however, overall there was only a small decrease in total carotenoid content.

Carotenoids from potato tubers.

In order to investigate the mechanisms that are associated with carotenoid storage, expression profiling was carried out using developing tubers from 2 crtb over-expressing lines using a total of 9 independent replicates, compared with 5 independent tubers from empty-vector controls. Each spot represents a gene that shows a significant change in expression between the transgenic and control (upper green line = 2-fold up-regulated, lower green line = 2-fold down-regulated).

Does ZEP map to the Y locus ?

The Y locus, exerting a major influence on tuber colour has been mapped to chromosome 3 (Thorup et al., 2000). Using a cleaved amplified polymorphism (CAPS) assay, we mapped ZEP to chromosomes 2. However other copies of the ZEP gene may be located elsewhere in the potato genome.

Expression profiling

Several lines with reduced tuber carotenoid content were identified and these lines were analysed for homology to the potato zeaxanthin epoxidase sequence. We are currently analysing the effects of these transgenes.

Transformation of high tuber carotenoid Solanum phureja

In order to increase carotenoid content beyond that previously seen for potato germplasm we are transforming high tuber carotenoid accessions of S. phureja with the crtb construct. The transgene is targeted to chromosome 5 and is driven by the potato rbcS promoter. We are currently analysing the effects of these transgenes.

Aims of the project

By comparing different potato germplasm, we wish to gain insights into the factors that control tuber carotenoid content. We wish to exploit this knowledge to be in a position to rationally tailor tuber carotenoid content. We wish to develop protocols for the transformation of high tuber carotenoid accessions of S. phureja.

Transformation of high tuber carotenoid Solanum phureja

To achieve increased carotenoid content, we have been using the potato rbcS promoter to drive a transgene which is targeted to chromosome 5. This allows us to target the transgene to a specific chromosome and avoid the recombination of the transgene with endogenous sequences. Our aim is to achieve a balanced set of transgenes that will increase carotenoid content to levels that are similar to those found in other high carotenoid potatoes.

Work in progress

Detailed analysis of a wide range of potato transgenic with modified carotenoid content.

Stacking of transgenes to obtain larger effects on tuber carotenoid content.

Microarray analysis of the effects of expressing transgenes in the tuber.

Analysis of novel genes revealed by microarray analysis.

References


Thorup T, Painter TE, Miller DD, Javelin 97, 11192-11197.

