Development of Methods for Visualising Root-Particle Interactions

Helen Downie1,2* Wilfred Otten2 Tracy Valentine1 Dmitri Grinev2 Lionel Dupuy1

1. SCRI, Invergowrie, Dundee, DD2 5DA, UK
2. SIMBIOS Centre, Level 5 Kydd Building, University of Abertay Dundee, Bell St, Dundee, DD1 1HG
*Helen.Downie@scri.ac.uk

Introduction

Root systems are essential in providing stability for plants and allowing uptake of water and nutrients. However, root systems are inherently difficult to study because they are concealed beneath soil and are sometimes referred to as the “hidden half” of the plant (Waisel et al., 2002).

Historically, methods of studying plant roots were largely destructive, using various types of excavations. This allowed measurements of morphological characteristics of root systems. Basic methods of *in situ* observation of roots have been developed, including the use of rhizotrons and the needleboard method (Goff, 1897). These approaches have provided the greatest insight into the architecture of root systems, but have numerous limitations.

Our objective is to develop high resolution imaging and visualization techniques to track root trajectories in heterogeneous soil and artificial granular media. The project will use the latest technological advances in microscopy and X-ray tomography to generate numerical descriptions of root growth.

Optical Projection Tomography (OPT)

* OPT microscopy is a technique used to image biological specimens in 3D, developed in Edinburgh by James Sharpe (Sharpe et al., 2002) for studying animal embryonic development. Transmitted / emitted light from the sample, is projected while the sample is rotated (Fig.1). Projections are then reconstructed using special software to form the 3D image.

* In previous studies it has been shown that the method can be applied to image biological samples (Fig.2), including plants (Lee et al., 2006).

* OPT will be used to collect information combining growth patterns and markers of biological activity of roots (Fig.3).

X-ray Micro CT (X CT)

* X-ray Micro CT is a non-invasive 3D visualization approach to image in depth root-soil processes (Fig.4). It has become an important tool for studying soil constituents, including plant roots *in situ* (Taini et al., 2008, Gregory et al., 2003).

1. Create reconstructed, isorefractive, heterogeneous medium for OPT microscopy of plant roots. This will allow us to control the properties of the growth medium (e.g. particle size) and will involve using refractive index matching techniques.

2. Cross validate approach using established X CT technique.

3. Use of image analysis techniques to obtain numerical descriptions of the evolution of root geometry in relation to the distribution of particles.

Challenges and Objectives

Refractive index matching is a technique used in optics to negate the visibility of boundaries between two or more different, transparent materials caused by a discrepancy in their refractive index. By using materials with matching refractive indices, the boundaries become invisible. This allows production of heterogeneous media with homogeneous optical properties.

This research has applications in predicting the distribution of roots in complex soil environments.

References


Pink Floyd’s (1973) Dark Side of the Moon. Harvest, Capitol.


Acknowledgements

Sonia Schmidt – SCRI / SIMBIOS
Cheryl Tickle – University of Bath
Aman Gill – SCRI / SIMBIOS