Thermal Treatments for Enhanced Shelf-Life of Minimally Processed Foods

Bobert D. Hancock

Quality, Health and Nutrition, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA. Rob.Hancock@scri.ac.uk

The UK is currently the European leader with regard to minimally processed (fresh-cut) food sales with a market value in excess of €700 M in 2004¹. Minimal processing of vegetable foods leads to the rapid induction of wound responses which ultimately result in deterioration of the product thus restricting shelf life (Fig. 1). Restricted shelf life represents difficulties for the industry due to the inability to schedule production according to supply, instead having to respond to demand which can fluctuate daily depending on

unpredictable factors such as prevailing weather conditions.

Treatment	Example	Target	Advantages	Disadvantages
Acidulants	Citric acid	Enzymatic browning	Cheap, available from 'natural' sources	Flavour taint
Antioxidants	Ascorbic acid	Enzymatic browning	Cheap	Flavour taint Fortification legislation
Preservatives	Sulphite	Enzymatic browning	Cheap, highly effective	Potential allergen Legislative issues
Antimicrobials	Hypochlorite	Microbial contamination	Cheap	Occupational exposure Consumer acceptance Nutritional deterioration
MAP	Low oxygen atmosphere	Enzymatic browning, Respiration, Microbial colonisation	Effective for prevention of deterioration resulting from several factors	Costly Potential impact on flavour High oxygen atmospheres explosive
UV-light	UV-C	Microbial contamination	Effective surface sterilisation	Costly May cause nutrient losses

Several methods are currently available for the extension of shelf life in minimally processed foods (Table 1) however, recent trends in consumer demand for

Scottish Crop

Research Institute

Food Processing

Figure 1 – Schematic of wound induced changes in fresh-cut products Tissue damage during the preparation of fresh-cut products results in a series of physiologi responses. The effects of these responses result in negative impacts regarding consumer acceptance of the product.

'natural' foods and the framing of food safety legislation within the paradigm of the precautionary principle are creating pressures to move away from chemical methods towards more environmentally benign techniques. Presented here are details of a research program for the development of methods for the extension of shelf life using mild thermal treatments.

Table 1 - Methods available for shelf-life extension of minimally processed products

Mild Thermal Treatments are Effective for Shelf-Life Extension

Mild thermal treatments are effective for the improvement of a number of parameters that result in shelf life deterioration (Fig. 2). Despite the relative ease of integration into current processing chains, the low cost and environmental sensitivity of thermal treatments, they have not been widely adopted. The most likely explanation is that conditions must be optimised for each material processed (species, cultivar, cut size etc). Here, research work is outlined that intends to overcome such problems by providing standardised protocols for the rapid determination of optimal thermal treatments.

Figure 2 - Impact of thermal treatments on shelf life parameters.

A Brownijn ou tettuce. Cul tettuce was treated by immersion in water at 45°C for 90 s. After 24 h storage at 4°C phenylation ammonia hysice (PAL) activity, total phenolic content and degree of browning was determined. Control lettuce was stored whole and wounded lettuce was cut but not thermally treated.²

arameters. B - vallowing of broccil florets. Broccil florets were prepared by cutting from the main stem and held in water at the defined temperature for the period of time shown (min). The daily increase in yellowing was determined by visual inspection and presented as an arbitrary scale. Untreated forets yellowed by 2.5 day¹.

C – Nutrient retention in strawberry. Strawberry fruit were harvested and air treats at 45°C for 60 min, nutrient retention was determined aft 10 days storage at 3°C.⁴

Workpackage

The next stage of the investigation will determine the mechanism by which thermal treatments extend shelf life. Current evidence suggests that both heat shock proteins² and reactive oxygen species⁶ are involved in mediating the beneficial effects of thermal treatments. Figure 4 shows a working hypothesis for how thermal treatments affect plant metabolism and the techniques that will be used to investigate the hypothesis.

Heat Shock HSPs ROS J Ţ Mediate signal trans Mediate gene expre Stress alert Block transcriptional machinery Protect biosynthetic proteins Impact on metabolism

Figure 4 Potential mechanisms by which thermal treatments impact on plant metabolism hemal treatments heat shock are known to result in the synthesis of heat shock proteins (HSPB) an release of reactive oxygen species (ROS) within plant tissues. HSPs at as chaperones protecting db biosynthetic and regulatory proteins. In addition, as the capacity for plant tissues to synthesise protein limited, increased production of HSPs blocks the production of detimental wound proteins such as the required for enzymatic browning. ROS are important signaling compounds produced within plant tass provide information regarding environmental stresses and it is likely that the transient increase in ROS caused by thema treatments prepare the plant for subsequent wounding stress. The arrows to the if the figure provide examples of techniques that will be used to investigate the hypothesis. sues to

Deliverables

- Easily integrated method for the extension of shelf life in three specific foods
- Understanding of the signal transduction and biochemical processes resulting in extended shelf life
- Biochemical and molecular markers for the rational development of the methodology in other foods

 References

 1. S Nicola et al. (2006) Acta Hort. 712:223-230.

 2. ME Saltveit (2000) Postharvest Biol. Teshnol. 24:61

 3. CF Formey (1995) HortSci. 30:1054-1057.

 4. I Lara et al. (2006) Scientia Hortic. 109:48-53.
 ol. 24:61-69 PJ Delaquis et al. (2004) Postharvest Biol. Technol. 31:81-91 CH Foyer and G Noctor (2005) Plant Cel/17:1866-1875

Acknowledgements The author wishes to thank lan Pitkethly for production of this poster and the Faraday Food Processing KTN for assistance in development of the research prog