Background
SCRI research has targeted key pests of Rubus which affect fruit quality and are increasingly difficult to control with standard methods.

The aim is to maximise fruit quality while minimising pesticide usage for high value soft fruit crops.

Key pests targeted are raspberry beetle (Byturus tomentosus), affecting quality even at low density, large raspberry aphid (Amphorophora idaei), affecting quality and plantation life via transmission of 4 viruses, and raspberry cane midge (Rasselia theobaldi), affecting yield.

Raspberry beetle
Most important pest in Rubus production
IPM component 1 - Monitoring using white sticky traps (Swiss Rebel®, Abrisense Vertical sticky trap)
IPM component 2 - Spray thresholds: Based on trials in 3 countries under EU RACER project > 5 beetles/trap → spray fresh production crops
IPM component 3 - Enhanced trapping / non-insecticidal pest reduction
- Identified bouquet of flower volatiles using GC-MS
- Identified biologically active volatile components using EAG
- Behavioural responses to flower compounds characterised in lab and field (several sites, crops, years)
- Optimising attractant release rates and trap design with commercial partner

Possible non-insecticidal management of this pest for organic and conventional growers

Large raspberry aphid
Varieties with aphid resistance (R genes) have been bred and used successfully for > 40 years in the UK.

Strong selection pressure on aphid populations has resulted in resistant breaking biotypes

The A1 resistance gene is now fully overcome in the UK, over 30 years

The A10 resistance gene was fully effective against all biotypes but is now breaking down in parts of the UK, in less than 15 years of commercial use

Partial resistance (multigenic) is more durable but less effective in reducing aphid numbers

New sources of resistance and IPM strategies to protect existing R genes urgently needed

Raspberry cane midge
Important pest in UK and Europe as part of ‘Midge Blight’ disease

Control requires accurate timing of sprays against first generation midges

SCRI and ADAS have developed computer-based prediction model (accurate to +/-3 days) and is available throughout UK

EU-funded RACER project has transferred technology to Switzerland and Italy

Poor up-take in Scotland to date

Summary
Key pests have been identified which affect fruit quality and plantation longevity

Pesticides are likely to be less available (EU legislation)

Consumers and supermarkets demand high fruit quality but low pesticide inputs

SCRI has developed several key components for IPM in Rubus

These IPM components need to be put together into grower-friendly packages and tested in different UK soft fruit production areas and types (field, protected, conventional, organic).