
Sherine Deakin1,2, Sandra MacRury2, Isobel Ford3, Ian Megson2 & Derek Stewart1
1Plant Products and Food Quality Programme, Scottish Crop Research Institute, Dundee, DD2 5DA
2Department of Diabetes and Cardiovascular Science, UHI Millennium Institute, Inverness, UK
3School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK.

Introduction
Resveratrol has been implicated as a major player in the cardioprotective effects of red wine, however many of the in vitro experiments conducted with resveratrol are at concentrations that are not attainable through oral ingestion. Pilot experiments with delphinidin, another polyphenolic compound found in soft berries, suggested that this anthocyanin might have more dramatic benefits than resveratrol at physiologically relevant concentrations. The aim of the study was to test the hypothesis that exposing endothelial cells in culture to delphinidin has significantly greater protective effects than equivalent concentrations of resveratrol in the face of oxidative stress.

Results and Discussion
In the absence of exogenous oxidizing agents, most concentrations of delphinidin or resveratrol had no impact on endothelial cell survival. The exception was the highest concentrations of both which proved deleteriously pro-oxidant.

Delphinidin had a profound impact on menadione-induced endothelial cell death, particularly at low concentrations, reducing cell death from 53% to 17% (100nM) and 32% (1μM). Indeed the effect was dose-dependent and displayed a classic bell shape with reducing efficacy below 100nm (data not shown). The cytotoxic effects of H2O2 and pyrogallol were not reversed by either resveratrol or delphinidin.

The results suggest that neither delphinidin nor resveratrol are effective inhibitors of H2O2 or superoxide-induced cell death, and that at supra-physiological concentrations the polyphenols might be detrimental. Nanomolar concentrations of delphinidin are, however, protective against ‘OH-mediated cell death, a property that is not shared by resveratrol.

Conclusion
Delphinidin is an effective ‘OH scavenger that offers protection, at biologically relevant concentrations, against menadione-induced death in endothelial cells. The mechanism by which this protective effect is mediated has yet to be elucidated, but the low concentrations at which protection is achieved suggests that it is not through direct inactivation of free radicals.

Further experiments are underway to explore whether the effect is due to up-regulation of intracellular antioxidant systems.