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Summary 

This report is a product of the Scottish Government Strategic Research Programme project JHI-D5-2 

‘Climate Change Impacts on Natural Capital’. This is report for Deliverable 2.4b: ‘Development of 

spatial assessments of wildland fire risk and impacts on NC assets’.  

The purpose of this report is to present the results of spatial assessments of future fire danger in the 

Cairngorms National Park for the 2020 -2049 period, generated using a probabilistic fire danger 

model trained using historical fire data for different fuels and data layers of climatic projections. The 

aim of this report is to present the methods and data layers used to develop and validate the fire 

danger model and present and discuss the generated spatial assessment of fire danger within the 

Park. The report also provides a discussion on limitations of this modelling approach along with 

potential improvements and suggestions for next steps towards developing fire risk assessment 

frameworks. 

Model development follows the approach of the Risk and Opportunities Assessment Framework 

(ROAF) being developed in this project, where a Natural Capital (NC) asset’s risk is defined as a 

function of its Vulnerability and Exposure to a Threat (R=VET). This report also provides the basis for 

planned work for Deliverable D2.5a: ‘Estimate impacts on assets (condition, functions)’ (due 

December 2026). 

The need for increased capabilities to understand fire danger and risks has been highlighted 

following publication of other reports from the JHI-D5-2 ‘Climate Change Impacts on Natural 

Capital’. These show how much Scotland’s climate has already changed and what the future climatic 

conditions influencing fire danger and risk may be: 

• Climate Trends and Future Projections in Scotland 

• Climate Extremes in Scotland 

• Assessment of Natural Capital exposure to current and future meteorological drought 

• Fire danger assessment of Scottish habitat types 

 

Advances in Technical Capabilities 

This report has been developed through technical advances made in the JHI-D5-2 project related to 

new analytical capability for calculating and mapping fire weather indices using time series of future 

climatic variables, development of a Machine Learning model with the capacity for simulating fire 

occurrence probabilities and conducting spatial fire danger assessments, and generation of R scripts 

for visualisation and plotting of the simulation results.  

 

 

  

https://www.hutton.ac.uk/sites/default/files/files/D5-2%20D1_1%20Framework%20Development%20(submitted)%2022-5-22(1).pdf
https://www.hutton.ac.uk/sites/default/files/files/D2_1a%20Climate%20trends%20summary%20report%20FINAL%206-12-22.pdf
https://www.hutton.ac.uk/sites/default/files/files/D2_1b%20Climate%20extremes%20report%205-3-23%20FINAL%20submitted.pdf
https://www.hutton.ac.uk/wp-content/uploads/2024/03/Assessment-of-Natural-Capital-asset-exposure-to-current-and-future-meteorological-drought-Report-D21d-D23c.pdf
https://www.hutton.ac.uk/wp-content/uploads/2024/03/Deliverable-D2_3b-Fire-Danger-Fuels-Final-6-3-23.pdf
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Introduction  
This work aimed to develop a spatial Machine Learning (ML) model with the capacity for simulations 

of fire occurrence probability using climatic variable inputs, including data layers of future climatic 

projections, with the specific objective of using model simulations to conduct spatial assessments of 

fire danger. Previously (Glendel et al., 2024) we proposed using a modelling approach based on 

Bayesian Belief Network (BNNs). However, initial analysis showed that this was not feasible due to 

knowledge gaps related to appropriate fire weather thresholds for establishing danger classes that 

made it difficult to propagate the probability tables required in the BBN approach. Therefore, we 

decided to develop an alternative spatial modelling approach using an ML algorithm (Random 

Forest) that is known to perform well in detecting complex and non-linear relationships between 

explanatory variables of fire danger. This allowed us to build on experience from the application of 

this algorithm to probabilistic soil mapping and leverage the available empirical data from past fire 

occurrence at high temporal resolution. Meanwhile, the strength of the Bayesian Network lies in 

integrating both biophysical and socio-economic variables and this will remain an option in future 

research. Here we used the Random Forest approach to simulate the fire danger component. In 

future research, the Bayesian Network approach could help to integrate these results to simulate 

fire risk, including fire risk perception, vulnerability and resilience assessment, impacts on ecosystem 

services provision and monetary costs. 

The focus of this work was on large scale wildfire danger assessments for seminatural habitats 

where most of the more remote and destructive fires typically occur in Scotland. Fires on cultivated 

land or in the wildland-urban interface were outside the scope of this study. The fire danger model 

was trained using fire/burnt area data at the national scale, but we used the Cairngorms National 

Park for model deployment and for producing fire danger assessments for selected future climate 

projections. The Park was selected because it is quite extensive and supports climatic, habitat and 

landscape characteristics that are representative of Scotland as a whole. Compared to attempting a 

national deployment, this approach enabled us to better assess the model’s performance  and 

identify weaknesses or limitations of this approach, and helped with identifying drivers of fire danger 

predictions and their relative importance. 

Methods for model development 

Overview 
We have previously explored frameworks for fire danger and risk assessment (Gagkas et al., 2023), 

and we have adopted the approach by Chuvieco et al. (2023) in which Fire Danger is the function of 

the likelihood of fire propagation and the presence of an ignition source (Figure 1). This approach 

forms the basis of model’s conceptual structure on which:  

• Climatic parameters (based on emission scenarios) for observed and future climate are used 

to calculate fire weather indices, including the effect of seasonality, that are used to assess 

fuel moisture of selected Natural Capital (NC) assets and assess the likelihood of fire 

propagation. In this study the focus is on wildfires burning seminatural vegetation so the 

selected NC assets are Broadleaves, Conifers, Seminatural grasslands (mainly Acid 

grasslands), Heather (Shrublands), Bogs (Peatlands) and Montane vegetation (e.g. scrub).  

• Accessibility is used as a proxy for assessing the likelihood of the presence of an ignition 

source. 

• Likelihoods of propagation and ignition are combined to provide an assessment of Fire 

Danger. 
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Figure 1. Framework for Wildfire Risk Assessments proposed by Chuvieco et al. (2023). 

 

We used the Cairngorms National Park (CNP) as our study area for trial and testing the fire danger 

model and conducting spatial fire danger assessments for the selected fuel types. Overall, the 

methodology for developing the modelling approach comprises three (3) main components:  

a) Develop the training dataset by randomly sampling spatial data layers of burnt area 
polygons and extracting values of selected covariates (predictors) at the locations of the 
generated virtual samples.  

b) Train and fine-tune the ML model using the training dataset and assess model performance. 
c) Use the ML model to simulate fire occurrence probabilities within the CNP and conduct 

spatial assessments to identify hotspots of future fire danger.  

A further objective of this work was also to “unlock the black box” to explore the patterns identified 

by the ML algorithm for the covariates used, both for checking that these patterns are conceptually 

sound but also for purposes of knowledge discovery.  

Modelling approach 
Studies modelling wildfire ignition risk and wildfire danger have previously utilised a logistic 

regression approach (e.g., Catry et al., 2009; Dixon and Chandler, 2019). However, ensemble 

decision trees, such as Random Forests (RF) (Breiman, 2001), are a robust alternative method to 

logistic regression for modelling non-linear relationships for both regression and classification 

purposes (Kirasich et al., 2018), and for this reason, the use of RF in wildfire modelling has seen a 

steady increase in the last few years (Malik et al., 2021; Tong and Gernay, 2023). RF is a ML 

algorithm with many advantages for complex modelling, such as interpretability, its ability to deal 

with missing data and with autocorrelated variables, and to utilise both discrete (i.e., categorical) 

and numeric (continuous) predictors. RF uses an ensemble of decision trees constructed by 

randomly selecting a group of observations from the training dataset (bootstrapping) and splits at 

each tree node are made by using the best predictor of a randomly selected subset from the entire 

suite of input variables (Breiman, 2001). RF uses decision trees to produce error prediction using an 

out-of-bag (OOB) strategy. OOB constructs each tree using bootstrap samples with replacement so 

that, on average, two-thirds of the observations are being used for training. The remaining 
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observations are left out to test model error (i.e., the OOB error). RF changes the order of 

arrangement (permutation) of the covariates randomly and considers all possibilities to select 

covariates in the OOB samples. This approach is considered to make RF less susceptible to overfitting 

(Liaw and Wiener, 2002). 

In this study we used random forest probability machines (RFPMs), which are an implementation of 

RF and are consistent nonparametric regression machines applied to binary or categorical outcomes 

that have been designed to estimate conditional probabilities rather than predict an expected 

response (Malley et al., 2012). In RFPMs, each tree provides a conditional probability estimate which 

is obtained by taking the proportion of observations in the training data set with an outcome value 

of 1 in the residing node. The final probability estimate is obtained by taking an average of all the 

individual tree estimates in the forest. In the context of predictive modelling, wildfire (ignition) and 

non-ignition samples are treated as the dependent variable, while the information extracted from a 

number of explanatory variables at sample point locations is used as the model predictors. The 

result of this modelling exercise is a matrix of probabilities of fire occurrence (ranging from 0 to 1) 

that can be classified into danger classes to produce fire danger class maps. An additional important 

output of the modelling are metrics of relative importance of the different explanatory variables 

used as predictors of fire danger, which can be used to identify drivers of probable fire danger in a 

given area. 

Development of the training dataset 

Generation of sample points 
The selected modelling approach requires both ignition (wildfire locations) and non-ignition sample 

points. Fire/ignition locations in Scotland are recorded by the Scottish Fire and Rescue Service 

(SFRS), but previous research has found low positional accuracy of recorded fires and difficulty in 

identifying fire incidents that related to wildfires (Gagkas et al., 2021). In the absence of an 

alternative dataset of fire ignitions with national coverage, wildfire locations were determined using 

169 polygons of burnt areas in ESRI shapefile (vector) format for the 2011-2019 period, of which 151 

were provided by the European Forest Fire Information System (EFFIS) and the remaining 18 have 

been previously mapped by Gagkas et al. (2021). All selected fires had burnt almost exclusively 

seminatural vegetation. Although access was available to more recent EFFIS wildfire data, the time 

period was not extended post 2019 because burnt areas had to temporally coincide with the daily 

time-series of observed climate that were used to calculate climatic variables and fire weather 

indices for the respective fire dates (see Section: Covariates).  Moreover, older (pre-2019) burnt area 

mapping by EFFIS detected mostly larger (>30 ha) fires because it was based on the semi-automatic 

classification of NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery 

using ancillary spatial datasets, but more recently, due to inclusion of high-resolution Sentinel 2 

imagery, smaller fires can also be detected that can be attributed to managed burning (Gagkas et al., 

2023). Because this work focused only on wildfires, we used only the pre-2019 burnt areas to ensure 

that prescribed burning was excluded from the analysis. To further ensure this, we removed burnt 

areas less than 5 ha in size that could be attributed to managed burning. Also, no fires were selected 

that had occurred in Shetland because this area is not covered by the observed climate dataset. 

Burnt area polygons contained information about the location of the fire, the respective 

administrative unit (i.e., Local Authority), initial and final fire dates and the size of the burnt area. In 

terms of temporal coverage, there were no burnt areas identified that occurred in August, 

September and November, whilst most historical fires had occurred in April.  

Climate data used to determine baseline climate and fire weather during fire initiation and for 

simulating future fire danger are available at 1 km grid squares. To ensure that climatic and fire 
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weather conditions at the time of burning were represented in the training dataset, each burnt area 

polygon was divided to segments based on the overlapping 1 km climate grid squares, and one 

random sample point was drawn within each burnt area segment using QGIS version 3.40 (QGIS.org, 

2025) (Figure 2). This process resulted in 1,214 virtual fire/ignition sample points (Figure 3). An equal 

number of non-ignition sample points was randomly drawn (Figure 3) a) outside the areas of the 

burnt areas polygons, extended by a 1 km buffer to ensure that ignition and non-ignition points did 

not fall within the same 1 km climate grid square for a given fire date, and b) within areas covered by 

seminatural vegetation, as mapped by the land cover dataset used (described below in Section: 

Covariates). Non-ignition sample points were also weighted by fire date, specified as the date of fire 

initiation, i.e., the same number of ignition and non-ignition sample points was randomly drawn for 

a given fire date, to ensure a temporally balanced representation of climatic and fire weather 

conditions within both burnt and burnt areas.  

 

 
Figure 2. Example of random sampling of ignition points within a burnt area and for segments 

defined based on 1 km climate grid squares, with their respective IDs given as labels. Labels (in red) 

of sample points give the calculated value of Fine Fuel Moisture Code (FFMC) for the given fire date 

(April 25th 2019). © Crown copyright and database right (2025). All rights reserved. The James Hutton 

Institute, Ordnance Survey Licence Number AC0000812928. 
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Figure 3. Locations of random virtual ignition (fire) and non-ignition samples used to develop the 

training dataset. © Crown copyright and database right (2025). All rights reserved. The James Hutton 

Institute, Ordnance Survey Licence Number AC0000812928. 
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Covariates 
We developed an initial set of 18 covariates that relate to wildfire propagation and ignition, these 

are described below and summarised in Table 2. The training set was generated by extracting all 

covariate values at the locations of the ignition and non-ignition samples. 

Baseline climate and fire weather 

Baseline climate and fire weather for the selected burnt areas in Scotland was determined using 

observed, daily meteorological variables at 1 km resolution for the selected fire dates from the 

Climate hydrology and ecology research support system (CHESS-Met dataset), available from 1961-

2019 over Great Britain (Robinson et al., 2023). Of the available meteorological variables, we used 

daily temperature, and precipitation totals to check how important these more accessible data 

layers were for the model’s performance. Fire weather was determined using the fire weather 

indices of the Canadian Fire Weather Index System (CFWIS) (Figure 4), a detailed description of 

which is given in Taylor et al. (2021). In the absence of fire weather codes specific to Scottish climatic 

and vegetation conditions, CFWIS-based fire weather is used in the model as a proxy of the moisture 

of different fuel fraction types and of fire behaviour (Table 1) and hence of climatically-driven fire 

danger. For comparison, in heather dominated moorlands, Taylor et al. (2021) suggest that possible 

Scottish vegetation equivalents for the Fine Fuel Moisture Code (FFMC) are the litter, moss and 

fibrous organic material down to amorphous organic material, and for the Drought Code (DC) the 

amorphous organic layer with highly variable depth (from centimetres to metres in deep peats), 

while for the Duff Moisture Code (DMC) is the loosely compacted organo-mineral or organic topsoil, 

similar to the original CFWIS. Each moisture code (FFMC, DMC and DC) has a time lag and rainfall 

threshold: 0.667, 15 and 53 days and 0.6, 1.5 and 2.8 mm of rain for FFMC, DMC and DC, 

respectively. If rainfall is lower than the threshold value, the code value does not decrease (Taylor et 

al., 2021). Higher moisture code (FFMC, DMC, DC) values indicate respective drier fuel layers, higher 

Initial Spread Index (ISI) values indicate windier conditions, while higher Fire Weather Index (FWI) 

values indicate higher fire severity. 

 

 

Figure 4. Components of the Canadian Fire Weather Index system (CFWIS) (from Taylor et al., 2021) 

 

Previous work has found that heathland and moorland fire occurrence is not well captured by the 

FWI and other CFWIS indices in Scotland because fuel models within the CWFIS do not match the 
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fuel structure of heather moorland (Davies and Legg, 2016; Taylor et al., 2021). However, a positive 

relationship has been found between the combined use of the FFMC and Initial Spread Index (ISI) 

indices and fire occurrence in Scotland, UK, and Northern Europe for winter-spring fires in heather 

moorland (Davies and Legg, 2016), while CFWIS has been found to work relatively well for capturing 

the occurrence of late spring and summer forest fires in Scotland (Taylor et al, 2021). Hence, in this 

study we chose to explore how the combined use of the fire weather indices can be used in a ML 

modelling approach for fire danger that can potentially identify non-linear relationships between the 

various indices.  

 
Table 1. Description of codes of the Canadian Fire Weather Index System 

Type Code/Index Description 

Fuel 
moisture 

Fine Fuel Moisture 
Code (FFMC) 

Moisture content of cured leaves, needles and small dead twigs on 
the forest floor 

Duff Moisture Code 
(DMC) 

Moisture content of loosely-compacted, partially decomposed 
needle litter 

Drought Code (DC) 
Moisture content of deep layers of compact humus and organic 

matter 

Fire 
behaviour 

Initial Spread Index 
(ISI) 

Combines FFMC and wind speed to provide representation of 
potential rate of spread without fuel quantity estimate 

Build-up Index (BUI) 
Weighted combination of DMC and DC designed to represent total 

fuel available for combustion 

Fire Weather Index 
(FWI) 

Weighted combination of ISI and BUI designed to provide 
representation of potential fireline intensity 

 
The fire weather indices were calculated using the daily meteorological variables of each respective 

fire date (defined as the date of fire initiation) using the cffdrs package in R (Wang et al., 2017) that 

has been previously installed in the UK Crop Diversity high-performance computing platform1. In 

previous work (Taylor et al., 2021; Gagkas et al., 2023) we extracted CFWIS indices from EFFIS fire 

danger forecasts at 8km grid resolution; however, in this study we chose to calculate CFWIS indices 

using CHESS-Met to be consistent with the future fire weather index calculations based on CHESS-

SCAPE, both of which are available at a much finer resolution of 1 km x 1 km.    

Fuel Types 

In previous work (Gagkas et al., 2023) we used the UKCEH Land Cover Map (LCM) for 2020 (Morton 

et al., 2021) to determine fuel type composition within EFFIS burnt area polygons. However, there is 

a well-recognised issue with LCM products of interclass confusion when mapping upland, 

seminatural habitats of low vegetation that usually occur on peaty soils using analysis of satellite 

imagery, due to their similar spectral signatures (Morton et al., 2021). This means that the 

distinction between heathlands and peatlands/bogs, where most wildfires occur (Gagkas et al., 

2023), may be misleading as it is effectively based on the depth of the organic layer of the soil and 

because a major fuel type above ground on peat bogs is also shrubs (mainly heather). To overcome 

this issue, we used the Land Cover Map of Scotland 1988 (LCS88) (MLURI, 1993) that was the first 

ever national (air-photo) census of land cover in Scotland to describe the principal features and 

characteristics of the countryside. An important aspect of the classification system is that it allows 

for mosaics of the land cover types to be identified, where the pattern of cover types was so 

complex that individual types could not, at the selected interpretation scale, be separated. This 

approach aligns well with defining the main Scottish fuel types.  

 
1 https://www.cropdiversity.ac.uk  

https://www.cropdiversity.ac.uk/
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Obviously, the extent of woodlands and forestry in LCS88 is outdated; hence we used the National 

Forest Inventory (NFI2) Scotland for 2015 (downloaded for Forestry Commission’s Open Data portal3) 

to update the LCS88 mapping of woodlands and forests for the time period of the selected burnt 

areas (2011-2019). For the purpose of this work, the hybrid LCS88-NFI map was classified to the 

following fuel types: 1) Broadleaves; 2) Conifers; 3) Seminatural grassland; 4) Heather; 5) Bog 

(peatlands) and 6) Montane (montane vegetation, low scrub and cliffs in LCS88). Figures 5a and 5b 

show the monthly fuel type composition of the selected burnt areas (by fire count and burnt area, 

respectively), which highlights that most fires occur on heather and bogs from early to late spring, 

while Figure 6a gives the spatial distribution of the selected fuels at national scale.  

 

 
Figure 5.  Monthly fuel composition by a) Fire counts and b) Burnt areas (in ha) for the EFFIS burnt 

area polygons used in this study. 

 

 
2 https://www.forestresearch.gov.uk/tools-and-resources/national-forest-inventory/  
3 https://data-forestry.opendata.arcgis.com/  

https://www.forestresearch.gov.uk/tools-and-resources/national-forest-inventory/
https://data-forestry.opendata.arcgis.com/
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Terrain 

Terrain shape and morphology are important for fire ignition due to its influence on wind regimes, 

solar exposure, rainfall and air temperature and humidity distribution (Chuvieco et al., 2023). The 

Ordnance Survey (OS) Terrain 50 digital elevation model (DEM) was used to characterise elevation and 

calculate the following terrain indices in SAGA GIS (Conrad et al., 2015): aspect and slope, wind 

exposure, diurnal anisotropic heating (DAH) and the SAGA version of topographic wetness index.  

Soils 

The importance of soils, specifically of soil moisture and wetness for providing resilience to fire 

propagation and spread, is sometimes overlooked in fire danger studies. For example, fire severity of 

wildfires in Scotland has been found to be higher in dry heath (found on drier, mineral soils) than wet 

heath (found on wetter organo-mineral/peaty soils) and blanket bog (found on peat soil) 

(Naszarkowski et al., 2024). To consider this effect and better help differentiate between fuel types, 

especially those related to moorland vegetation, we used a digital map of soil series translated to 

Hydrology of Soil Type (HOST) classes at 50m resolution (Figure 6b) generated from the spatial 

disaggregation of the National Soil Map 1:250,000 units (Gagkas and Lilly, 2024). HOST classifies soils 

with similar hydrological behaviour based on information on flow mechanisms, water storage 

capacity, saturated hydraulic conductivity and geology or parent material (Boorman et al., 1995), and, 

hence, is considered as an appropriate classification for representing variation in soil water regimes 

(e.g., dry vs wet soils). 

Variables related to ignition sources 

Previous research has found that wildfires occurring in very remote and remote rural areas (north and 

north-western Scotland) affecting mostly heathlands and bogs seemed to be caused mainly by 

accidental ignitions caused by intentional burns that got out of control, which might be associated 

with prescribed burning, or by tourism/recreational activities (Gagkas et al., 2021). Accessibility has 

been found to be directly related to the likelihood of ignition and distances to road or path networks, 

to parking places and nearest settlements have been found to be the most important predictors of 

ignition risk in similar studies, e.g., as in the Peak District National Park (Dixon and Chandler, 2019). 

However, the difference between these approaches and the current study is that they have used 

known/recorded ignition points to calculate these distance metrics, whilst this study’s methodology 

is agnostic to the location of fire initiation. Nevertheless, we explored the inclusion of distance metrics 

by calculating distances in QGIS from the location of the virtual ignition and non-ignition sample points 

to the nearest road and path network (from OS Open Layers) and to nearest rural parking spaces 

(extracted from OpenStreetMap layers). This resulted in little differentiation in distances between 

ignition and non-ignition points, and initial model runs showed that the inclusion of these distance 

metrics did not improve the performance of the model.  

Therefore, we used an alternative approach by including the latest version (2022) of the Urban Rural 

Classification that provides a consistent way of defining urban and rural areas across Scotland and is 

based upon two main criteria: (i) population as defined by National Records of Scotland (NRS), and (ii) 

accessibility based on drive time analysis to differentiate between accessible and remote areas in 

Scotland. The 6-fold classification distinguishes between urban, rural, and remote areas through six 

categories, while the 8-fold classification used in this study (Figure 6c) further distinguishes between 

remote and very remote regions. 

Regarding the importance of prescribed burning, and muirburn in particular, as an important ignition 

source in Scottish uplands, there is evidence that muirburn causes a proportion of wildfires that occur 

on moorland, but there remains uncertainty regarding this proportion (Holland et al., 2022). Recent 

analysis by Fielding et al. (2024) that used evidence of muirburn quantified using high-resolution 
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imagery (Matthews et al., 2020) and wildfire occurrence determined by aerial and satellite imagery 

(including EFFIS burnt areas) found limited spatial co-occurrence of wildfire and prescribed burning 

on moorlands in Scotland, although the authors stressed that it was uncertain whether this was a clear 

indicator of the proportion of muirburns that might get out of control to become wildfires. Due to 

these uncertainties, evidence of muirburn, mapped at 1 km grid squares by Matthews et al. (2020) 

was not used as a covariate in the fire danger modelling; instead we overlaid the future fire danger 

simulations in the Cairngorms National Park with the mapped muirburn areas to assess their spatial 

co-occurrence aiming to identify hotspots of high future fire danger where muirburn is also present 

and which could act as a potential ignition source.  It is also worth noting that both elevation and slope 

influence accessibility and, hence, can be important as a proxy for the presence of ignition sources as 

well.  

Additional variables  

Phenology has been found to be a key driver for fire in the UK and comparable humid temperate 

regions (Nikonovas et al., 2024). The UK’s and Scotland’s fire regime is characterised by burning in 

seminatural grasslands and evergreen dwarf shrub ecosystems in early spring when vegetation is still 

dormant, but during the high-greenness phase in grasslands and heathlands in late spring and 

summer, fire activity is reduced by a factor of 5 – 6, despite typically elevated fire weather conditions 

within that period. This shows that seminatural vegetation in UK uplands is very resistant to burning 

during the high-greenness phase. However, this ‘fire barrier’ is diminished during severe drought 

episodes (Nikonovas et al., 2024). Therefore, in order to consider the phenological component in our 

modelling, we used the recorded fire dates to assign burnt areas three (3) time periods/seasons that 

are being used by NatureScot4 in the generation of fire statistics to represent phenological stages of 

different fuel types: 1) Season T1: January, February, March, April; 2) Season T2: May, June, July, 

August, September; and 3) Season T3: October, November, December.  

We also generated a “Regions” layer (Figure 6d) by aggregating the main river basins in Scotland used 
in previous modelling work (Gagkas and Lilly, 2019) to create a map of the main five (5) regions of 
Scotland: North, West, East, Central and South (Figure 6d). This layer was included to provide an 
additional, spatially explicit context to the modelling approach to assist in identifying patterns related 
to climatic conditions and land use and soil composition in different areas of Scotland. Also, previous 
findings indicate that presence and contribution of ignition sources differs between areas and Local 
Authorities in Scotland (Gagkas et al., 2021). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4 https://opendata.nature.scot/datasets/scottish-wildfire-and-muirburn-extents  

https://opendata.nature.scot/datasets/scottish-wildfire-and-muirburn-extents
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Table 2. Description of collated covariates for developing the training dataset for the fire danger model. 
Covariates in italics were removed from the final training set (see Section: Final Covariate Selection) 

Code Description Type Source Reference 

TEMP 
Daily temperature (oC) at fire 
date 

Continuous 

CHESS-Met variables at 1km 
grid square 

Robinson et al. (2021a)  

PREC 
Precipitation total (mm) at 
fire date 

Continuous 

FFMC Fine Fuel Moisture Code Continuous 

ISI Initial Spread Index Continuous 

DMC Duff Moisture Code Continuous 

DC Drought Code Continuous 

BUI Built-up Index Continuous 

FWI Fire Weather Index Continuous 

Elev 
Elevation above sea level in 
metres 

Continuous 

Ordnance Survey digital 
elevation model at 50m grid 

resolution (OS DTM 50) 

OS Open Data  

Asp Aspect (radians) Continuous Zevenbergen and  
Thorne (1987) Slope Slope (radians) Continuous 

WindExp Wind exposure Continuous 
Boehner and  Antonic 

(2009) 
DAH Diurnal anisotropic heat Continuous 

SAGA WI SAGA Wetness Index Continuous 

LCS 
Land Cover of Scotland 1988 
& Forest Inventory 

Categorical 
 

Macaulay Land Use Research 
Institute (MLURI) & Forest 

Research 
MLURI (1993) 

HOST 
Hydrology of Soil Types 
classification 

Categorical  Boorman et al. (1995) 

Season 
Assigned based on day of fire 
initiation 

Categorical EFFIS Burnt Areas - 

UR8 
Scottish Government Urban 
Rural Classification (2022) 

Categorical https://spatialdata.gov.scot OGL 

Regions Aggregated river basins Categorical - Gagkas and Lilly (2019) 
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Figure 6. Map of selected categorical covariates a) Fuel type, hybrid map of LCS88 and NFI2015; b) 

Hydrology of Soil Types (HOST) classes; c) Urban-Rural Classification (8-fold version) and d) Regions. 

See text for description of covariate generation. © Crown copyright and database right (2025). All 

rights reserved. The James Hutton Institute, Ordnance Survey Licence Number AC0000812928. 

a) b) 

c) d) 
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Development of the fire danger model 

Final covariate selection 

We used a variable selection approach to identify a parsimonious set of key variables (covariates) for 

simulating fire occurrence probabilities to improve computational efficiency by excluding less-

informative predictors, but also because variable selection has also been found to result in small 

improvements to the accuracy of RF predictions (Gagkas and Lilly, 2019). Initially, we checked 

autocorrelation between selected covariates in the training dataset using both ignition and non-

ignition samples and removed the Built-up Index (BUI) because its values had >0.8 correlation with 

the Duff Moisture Code (DMC), the latter being one of the main fuel moisture codes. Then, for the 

remaining covariates, we used recursive feature selection using 5-fold cross validation (CV) and the 

RF algorithm in caret (Kuhn, 2008) in the statistical software R (R Development Core Team, 2025) to 

identify the combination of covariates that resulted in the highest accuracy metrics. This process 

resulted in the selection of 14 covariates for inclusion in the final model, with the terrain derivatives 

of aspect, diurnal anisotropic heat (DAH), wind exposure and SAGA Wetness Index being removed 

from the training dataset.  

Boxplots shown in Figures 7, 8 and 9 show the range of values of selected, continuous covariates for 

ignition vs non-ignition training samples for selected fuel types and seasons, while barplots in Figure 

10 give the counts of ignitions vs non-ignition training samples for the selected, categorical 

covariates. Overall, the sampling approach used resulted, for most covariates and fuel types, in 

distinct differences in their covariate ranges. For example, ignition samples of Conifer fuel type and 

fire date in season T2 (May to September) were located at lower elevations and had greater FWI 

values than the respective non-ignition samples of the same fuel type and for the same fire date 

season (Figure 7b). These observed differences ensured that the training dataset was appropriate for 

this particular modelling approach. Descriptive statistics for all continuous covariates for ignition and 

non-ignition training samples are given in Table A1 in the Appendix. 

Final model settings 

We randomly selected 70% of the virtual sample points for training the model (1,700 ignition and 

non-ignition samples), leaving 30% for internal validation (728 points not used for training the 

models). We tuned and trained a random forest probability model (Malley et al., 2012) using the 

ranger method (Wright and Ziegler, 2017) in caret in R. The main model hyperparameters, number 

of covariates (predictors=p) randomly selected at each node (mtry), minimum node size 

(min.node.size) and number of trees to grow (ntree) were tuned and determined using a 5-fold CV 

for mtry=p^0.5, p/4, p/3, and p/2, min.node.size=5,1 0, 15 and ntree=500, 750 and 1,000. 

Hyperparameter values that gave the model with the greatest accuracy were mtry=5, 

min.node.size=5 and ntree=500.  
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Figure 7. Boxplots of selected, continuous covariates for ignition (Fire=1) and non-ignition (Fire=0) 

training samples with fire dates in season T2 (May to Sep) and fuel types a) Broadleaves and b) 

Conifers. 

a) 

b) 
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Figure 8. Boxplots of selected, continuous covariates for ignition (Fire=1) and non-ignition (Fire=0) 

training samples with Heather fuel type and fire dates in season a) T1 (Jan – Apr) and b) T2 (May to 

Sep). 

 

a) 

b) 
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Figure 9. Boxplots of selected, continuous covariates for ignition (Fire=1) and non-ignition (Fire=0) 

training samples with Bog fuel type and fire dates in season a) T1 (Jan – Apr) and b) T2 (May to Sep). 

 

a) 

b) 
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Figure 10. Counts of ignition (BA=Yes) and non-ignition (NA=No) samples by categories of selected discrete covariates a) Fuel type, hybrid map of LCS88 and 

NFI2015; b) Hydrology of Soil Types (HOST) classes; c) Urban-Rural Classification; and d) Regions. 

a) 

c) 

b) 

d) 
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Simulation of future fire danger in the Cairngorms National Park 

Study area 
The Cairngorms is part of an international family of National Parks and is the largest in the UK, at 

4,528 km2 (Figure 12a). The Cairngorms National Park (CNP) is located in the Scottish Highlands, and 

covers parts of Aberdeenshire, Moray, Highland, Angus and Perth and Kinross. Spatial assessments 

of future fire danger in the Park were conducted in the area covered by this study’s selected land 

covers/fuel types that covered 4,168 km2 or ~92% of the Park total area. Land cover/fuel type 

composition within the CNP study area was determined using the same hybrid approach used 

previously for the generation of the training samples, but in this case the LCS88 map was combined 

with the latest available (2023) NFI map for Scotland to provide an accurate representation of 

current tree coverage within the Park (Figure 12b). Based on the generated land cover map, Heather  

was the dominant fuel type covering 1,966 km2 or 47% of the CNP study area, followed by Bogs (825 

km2 or 20% cover), Montane vegetation (542 km2 or 13% cover) and Conifers (531 km2 or ~13%), 

while Seminatural grasslands and Broadleaves covered ~4.5% (189 km2) and 3% (115 km2) of the 

study area, respectively (Figure 11).  

 

 

Figure 11. Areas of selected Land use/Fuel types within the Cairngorms National Park based on the 

hybrid LCS88 – NFI_2023 map. 

 
Peaty podzols and gleys (HOST15) covered the greater area in the CNP study area (1,029 km2 or 

~25% cover), followed by Humus-iron podzols (HOST17, 932 km2 or 22% cover) and Upland blanket 

bogs (HOST29, 785 km2 or 19% cover). Almost 3,500 km2 (~84% cover) in the CNP study area were 

classified as Very Remote Rural areas (Fold=8) based on the Urban Rural Classification, with another 

16% (or 679 km2) being classified as Remote Rural Areas (Fold=7), while almost all of the study area 

in the Park (4,153 km2 or 99.6%) was within the East region, as specified in this study (see Figure 6d). 

The study area has a quite varied terrain (Figures 12c and 12d), with more than half of the study area 

(56%) lying on altitudes greater than 500m above sea level. 
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Figure 12. Maps of a) Boundary of the Cairngorms National Park; b) Land cover/fuel type based on hybrid LCS88 and NFI2023; c) Elevation range (in m) and 

d) Slope gradients (in radians). © Crown copyright and database right (2025). All rights reserved. The James Hutton Institute, Ordnance Survey Licence 
Number AC0000812928

a) b) 

c) d) 
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Climate and future fire weather 
Recent analysis looking at observed changes in the CNP and projected climate change using four 

UKCP18 Ensemble Members (Rivington and Jabloun, 2024) found that the climate in the Park has 

already changed since the 1960-1989 period. These changes are spatially and temporally variable, 

with the winter months becoming both wetter and warmer, whilst summer months have become 

warmer. Future projections indicate that the Park will experience further warming over the coming 

decades, as well as seasonal and spatial shifts in precipitation distribution. A key finding was that 

large sections of the Park are likely to experience spring and summer seasons when there is a 

potential decrease in meteorological water (evapotranspiration > precipitation), meaning that areas 

that have previous had a meteorological water surplus could experience a deficit in the future. This 

will increase the risk of drier soils and vegetation, with consequences on ecological functions and fire 

danger. This analysis also calculated climate extreme indicators that are relevant to fire weather 

characteristics, such as the number of Consecutive Dry Days (CDD: maximum length of a dry spell in 

any month when precipitation is less than 1mm per day). During the 1990 - 2019 period, which 

includes the historical fires used in the training dataset, for most months CCD were greater in the 

northern and eastern areas of the Park, such as in the valleys of the Spey and Dee rivers (Figure 13a). 

Despite variability between the climatic projections used, they seem to agree that most of the area 

of the Park is expected to see a decrease in CDD (i.e., experience wetter conditions) during late 

winter and spring months, with an increase in CDD projected in late summer and early autumn 

(Figure 13b). 

Daily fire weather codes and indices for the 2020 - 2049 period were calculated using CHESS-SCAPE 

climate data set (Robinson et al., 2023b), which provides several physical climate variables over the 

UK for the period 1980 - 2080 at 1 km spatial resolution. It is derived from four ensemble members 

of the UKCP18 12 km Regional Climate Model (RCM) (the same raw data used by Rivington and 

Jabloun, 2023), bias-corrected and downscaled to 1 km (comparable but different method than 

Rivington and Jabloun, 2023) and extended to cover four different realisations of future climate for 

each of four different representative concentration pathway (RCP) scenarios: RCP2.6, 4.5, 6.0 and 

8.5. We selected the ‘stringent’ emissions scenario, RCP8.5, for consistency with the climate trends 

work of Rivington and Jabloun (2023), and selected Ensemble Member 1 (EM01) mainly because it is 

in the middle of the range of temperature increases (about 2.3 °C) and the largest decrease in 

annual precipitation (about 7.5 %) among the four ensemble members across the CNP. Moreover, 

EM01 has one of the smallest increases in spring (March-May) temperature (Robinson et al., 2023b), 

the smallest increase in winter (December-February) and the largest decrease in autumn 

(September-November) precipitation. It also has a very small decrease in spring precipitation and 

one of the smaller decreases in the summer (June-August). 

We downloaded and built a database of NetCDF files at 1 km resolution aligned to the Ordnance 

Survey (OS) British National Grid) of gridded daily air temperature (°C ), relative humidity (%), wind 

speed (m s-1), and precipitation (mm) for the 2020 - 2049 period and calculated the required fire 

weather indices (FFMC, ISI, DMC, DC and FWI) for the 4,697 1 km grid squares covering the study 

area in the CNP using the cffdrs R-package. All these calculations were performed in the UK Crop 

Diversity high-performance computing platform. Figure 14 gives monthly maps of the 50th (median) 

and 95th percentile (used as indicator of extreme fire weather as in Perry et al., 2022) for the 

selected fire weather indices using the daily calculated values at each 1 km grid square and for the 

2020 - 2049 period. Visual inspection of these maps reveals some clear patterns of fire weather 

spatial variation, with higher mean and extreme fire weather index values found mainly in the 



D5-2 Climate Change Impacts on Natural Capital. Deliverable 2.4b: Spatial assessments of future fire danger 

 

25 
 

northern and eastern parts of the Park, while for DMC and DC (Figures 14c and 14d), higher values 

are observed within the valleys of the Spey and Dee rivers in most months. 

 

 

 
Figure 13. a) Observed mean monthly Consecutive Dry Days over the period 1990 – 2019 and b) 

Cairngorms National Park land area proportion (%) for the mean monthly number of Consecutive Dry 

Days for the future period 2020-2049 based on EM04, EM10, EM12 and EM15 (Rivington and 

Jabloun, 2024). 

 
The covariate data layers were converted to grid layers at 250m resolution, which was considered 

appropriate for a) harmonising data layers with variable resolution (e.g., terrain at 50m pixel vs 

climate at 1km pixel) and b) preserving the level of spatial variation of the land cover map that was 

available in vector (polygon) format. The stacked grid layers were converted to a data frame and 

were inputted to the RF fire danger model to generate daily probabilities of fire occurrence for the 

2020 - 2049 period and for each of the 66,692 250m grid cells covering the study area in the Park.  
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Figure 14. Monthly maps of 50th and 95th percentile values of selected Fire Weather Indices a) FFMC, 

b) ISI, c) DMC, d) DC and e) FWI, calculated using daily calculated values using CHESS-SCAPE climate 

at 1 km resolution for the 2020 - 2049 period. 

 
 
 

e) 
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Results & Discussion 

Model performance 
Overall, the trained model performed well with an OOB prediction error of 0.106, indicating an 

accuracy of almost 90% in the OOB sample. Using a probability of fire occurrence threshold of 0.5 

(i.e., the model predicts “fire” if there is a >=50% probability of a fire occurring at this location), the 

model predicted fire in 751 of the 847 ignition samples and non-fire in 706 of the 853 non-ignition 

samples used for model training. Results of internal testing using the left-out samples using the 

same probability threshold showed high sensitivity (0.855), i.e., the avoidance of false negatives 

(predicting non-fire where a fire had actually occurred). The model’s specificity was also high (0.876), 

demonstrating a good ability to avoid predicting false positives, i.e., predicting fire at the location of 

a non-ignition sample. Overall balanced accuracy was 0.865. Table 3 gives the accuracy statistics.  

Table 3. Accuracy statistics of the fire danger model calculated using the left-out samples. 
 Predicted non-fire Predicted fire 

Actual non-fire 312 
(True negative) 

45 
(False positive) 

Actual fire 53 
(False negative) 

318 
(True positive) 

 

As Dixon and Chandler (2019) note, selection of a probability threshold for ignition or fire occurrence 

depends on user needs, considering that the cost of a false positive is likely not equal to the cost of a 

false negative. For example, attending a call-out in which no ignition has occurred may be preferable 

to not attending a call-out in which there is an ignition. Therefore, in the case of fire suppression it 

might be preferable to set higher thresholds to reduce the likelihood of a false negative (the model 

predicts no ignition when actually there is an ignition). In this study the objective was not fire 

suppression but the spatial assessment of future fire danger and this required defining appropriate 

fire danger classes based on the generated probabilities of fire occurrence. The formulation of these 

classes was informed by the model predictions for both the train and independent samples, which 

showed that most misclassifications (false negatives and false positives) occurred for predicted 

probabilities between 0.45 to 0.55, while true positives and true negatives in most times had 

prediction probabilities >0.60 and <0.40, respectively. Hence, the following fire danger classes were 

defined: 

• Very Low (VL): <=0.15 probability. 

• Low (L): >0.15 - <=0.45 probability. 

• Moderate (M): >0.45 - <=0.55 probability. 

• High (H): >0.55 - <=0.85 probability. 

• Very High (VH): >0.85 probability. 

Relative importance of model predictors (covariates) was assessed using the metric of mean 

decrease in accuracy (MDA) that is calculated automatically by the RF algorithm. Elevation was the 

most important model predictor (Figure 15), which highlights the importance of both weather and 

climatic patterns and accessibility for fire occurrence prediction. The Urban Rural classification 

scored relatively low in terms of MDA, but this can be explained by the fact that training samples 

were located mostly in two folds (67: Remote Rural and 8: Very Remote Rural), and this lack of 

variability resulted in the predictor getting a lower MDA. On the contrary, fuel type was the second 

most important predictor, which reflects the known differences in fire danger for different fuels. Of 

the fire weather indices used, FFMC and DMC were the most important overall, while daily 
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temperature was found to be more important than DC, FWI and ISI. Seasonality was found to be the 

least important predictor; this is probably driven by the imbalance in the training dataset since most 

past fires used to develop the train samples occurred in Season T1, while very few occurred in 

Season T3. It is worth noting though that RF model predictions are based on identifying non-linear 

interactions between all covariates used, therefore their relative importance was expected to vary 

substantially by e.g., combinations of fuel type and season, compared to the overall predictor 

importance presented here.  

 

 
Figure 15. Importance of covariates used for ignition risk modelling based on MDA. 

 

Spatial assessments of future fire danger 

Mapping approach  
Fire danger simulations comprised of predicted daily probabilities of fire occurrence for the 2020 -

2049 period and for each of the 66,692 250m grid cells covering the extent of the CNP study area. To 

conduct the mapping assessments of future fire danger and visualise and communicate them in an 

effective way, we devised the following approach: 

• We assigned the daily predicted probabilities of fire occurrence to the formulated 5 fire 

danger classes: VL, L, M, H and VH. 

• We counted the number of days falling within each danger class at each 250m grid square 

separately for the three Seasons T1, T2 and T3, and calculated respective proportions. For 

example, if at a specific 250 grid square 360 days were found to have Moderate fire danger 

for Season T1 (Jan - Apr) for the 2020-2049 period (total count of 3,600 days), then the 

proportion of days in that grid square with Moderate fire danger for Season T1 was 10% 

(360/3,600 x 100). For the purposes of this work, this 10% was interpreted as fire danger 

being on average Moderate in that grid square for approximately 3 days a month between 

January to April, although great variability is expected within the 30-year period covered by 

the climatic projection used. 

• The generated proportions for each fire danger class were used to produce spatial layers and 

respective maps. They were also used to calculate descriptive statistics for selected 

covariates and generate plots to explore patterns of covariate ranges by fire danger classes 

that were identified by the model for fire occurrence prediction.  
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Results of the mapping assessments following this approach are presented below individually for 

each of the 3 Seasons (T1, T2 and T3) used in this study, with the objective to a) identify areas 

(hotspots) of future fire danger within the CNP and b) identify drivers of fire danger within these 

hotspot areas for different fuel types. Hotspot areas were defined as those where >10% of days 

within a given season had Moderate and/or High fire danger class (there were very few days with a 

Very High predicted fire danger); this threshold was considered sensible based on the results of the 

fire danger simulations and denotes moderate to high fire danger for at least 3 days each month. 

Hotspot areas, and the respective fuel types are given in maps, while boxplots visualise the range of 

fire weather index values by danger class for different fuels in these hotspot areas. In addition, 

monthly boxplots of continuous covariates for the whole area of the CNP (within and outside of 

these hotspot areas) are given in Section A2 of the Appendix.  

Season T1 Fire Danger Assessment 
In Season T1, which covers the late winter to early spring period (Jan – Apr), 966 250m grid cells 

were found to have >10% days falling within the Moderate fire danger class, covering an area of ~60 

km2 or just 1.45% of the study area, with ~ 15% of these grid cells having >20% or >6 days a month 

on average falling within the Moderate Fire Danger class (Figure 16a). Only one (1) grid cell was 

found to have >10% days falling within the High fire danger class. Regarding fuel type, most grid cells 

(n=820) had Heather as their fuel type, and in the remaining 146 grid cells the fuel type was Bogs 

(Figure 16b). Most of this area was located close on the northern boundary of the Park around the 

wider Grantown on Spey area and mostly on the hills north of the A938 section between Dulnain 

Bridge and Duthil and just to the south of Speybridge, with a smaller area was located north of Loch 

Davan close to the eastern boundary of the Park. Most of these grid cells were found on upland 

blanket peat (HOST29, n=333), unconsolidated sand and gravels on valley hillslopes (HOST5, n=287) 

and peaty podzols or peaty gleys (n=135). Also, 97% this area was located in Remote Rural Areas 

based on the Urban Rural classification (Fold=7).  

Regarding differences in covariate values within the fire danger classes in these areas, areas with 

simulated Moderate or High fire danger were on lower elevation and slope gradients than areas with 

Very Low or Low fire danger for both Heather and Bog fuel types. These differences become more 

evident when comparing simulated fire danger for the whole extent of the CNP (Appendix A2). For 

example, in Heather areas, mean elevation in areas with simulated Moderate and High simulated 

fire ranged from 311m to 396m, while in areas of Very Low to Low fire danger mean elevation 

ranged from 396m to 575m. In addition, simulated fire danger was always Low or Very Low in areas 

above ~650m.  
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Figure 16. Map of a) Proportions (%) of Season T1 days within the Moderate Fire Danger Class and b) 
Fuel Type of areas falling within the Moderate or High Danger Class for >10% of Season T1 days, for 

the 2020-2049 period in the Cairngorms National Park. 

 
 
 
 

a) 

b) 
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Looking at the influence of fire weather, FFMC and ISI and to a lesser extent DMC seemed to be 

driving simulated fire occurrence probabilities in both Heather and Bog areas (Figure 17 and 

Appendix A2). High FFMC and DMC represents drier conditions in the moss and litter layer and in 

peaty topsoils, respectively, while high ISI indicates windy conditions. In the hotspot areas on 

Heather, mean FFMC and ISI in days with Moderate or High simulated fire danger was 67-71 and 1.6-

1.9, respectively, compared to 40-48 and 0.1-0.6, respectively for days with Very Low to Low 

simulated fire danger; these differences were similar when looking at simulated fire danger for 

whole of the CNP. However, it is also evident that there is considerable overlap in fire weather index 

values between all fire danger classes, and this is driven by the fact, which is reflected in the training 

dataset, that wildfires in Scottish moorlands in late winter and early spring have been found to occur 

in lower FFMC (relatively high fuel moisture content). This might have caused confusion in model 

predictions. At the same time, the fact that fire danger was simulated to be Moderate or High for 

>10% of days in the 2020-2049 period in a relatively small area, despite the model using sensible 

FFMC and ISI thresholds for assigning greater fire danger, implies the prevalence of wet and/or low 

wind conditions on average in the daily time series for Season T1.   

Regarding the spatial co-occurrence of identified hotspots areas with mapped muirburn areas, 63% 

and 41% of hotspot areas on Heather and Bog, respectively, were found on mapped muirburn areas. 

Season T1 (Jan – Apr) is within the standard muirburn season in Scotland that runs from October 1st 

to April 15th. Although the link between muirburns and wildfires in Scotland is uncertain, it is 

suggested that extra caution is exercised in these areas during the burns to minimise any likelihood 

of fire spreading accidentally.  
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Figure 17. Boxplots of calculated Season T1 daily Fire Weather Index values by predicted Fire Danger 
classes for a) Heather and b) Bog areas in the Cairngorms National Park. 

 

Season T2 Fire Danger Assessment 
In Season T2, which covers the late spring to early autumn (May – Sep) and when all vegetation is 

live, the model predicted a substantial increase of hotspot areas, i.e., >10% days falling within the 

Moderate of High fire danger class. Overall, 3,347 250m grid cells were identified as fire danger 

hotspots, covering an area of ~209 km2 or 5% of the study area, with ~ 15% of these grid cells having 

>20% or >6 days a month on average falling within the Moderate fire danger class (Figure 18a). Only 

three (3) grid cells were found to have >10% days falling within the High fire danger class. Regarding 

fuel type, Conifers were the fuel type for ~ 40% of this area, followed by Heather (28%), Seminatural 

grassland and Broadleaves (both 11%), whilst 194 (~6%) grid cells were on Bog and only two (2) on 

Montane vegetation (Figure 18b). Most of the identified fire danger hotspot area was located along 

the main floodplains and valleys of rivers Spey and Dee, in parts of the Abernethy Forest and in 

smaller areas in Glen Lochy and the Muir of Dinnet. Most of these grid cells were found on 

unconsolidated sand and gravels on valley hillslopes (HOST5, n=1,172), followed by upland blanket 

a) 

b) 
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peat (n=680) and peaty podzols or peaty gleys (n=365). Also, 67% this area was located in Remote 

Rural Areas based on the Urban Rural classification (Fold=7) and 33% in Very Remote Rural Areas 

(Fold=8).  

 

 

 
Figure 16. Map of a) Proportions (%) of Season T2 days within the Moderate Fire Danger Class and b) 
Fuel Type of areas falling within the Moderate or High Danger Class for >10% of Season T2 days, for 

the 2020-2049 period in the Cairngorms National Park. 

a) 

b) 
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There was little difference in elevation ranges in grid cells with Broadleaved and Conifers fuel types 

in both hotspot (Figures 19a and 19b) and all CNP grid cells (Appendix A2) between the Very Low, 

Low and Moderate Danger Classes, but High simulated fire danger generally occurred in lower 

altitudes. Elevation seemed to be a more important variable for distinguishing between low and high 

fire danger in areas on Heather, Bog and Seminatural Grasslands. As in Season T1, fire danger was 

found to increase with increasing FFMC and ISI for all fuel types (Figure 19 and Appendix A2), but 

with less clear distinctions for FFMC between danger classes in Heather areas. At the same time, 

DMC and to a lesser extent DC seemed to become more important in influencing fire danger in areas 

of Broadleaves, Conifers and Bogs, while FWI was identified as a driver of High fire danger for 

Broadleaves and Conifers, with n FWI being >5 in hotspot areas and ranging from 5.2 in August to 8.3 

in August for the whole CNP area in days of simulated High fire danger in the 2020 - 2049 period. 

Season T2 is outside the standard muirburn season in Scotland (October 1st to April 15th), so 

muirburns are not considered a potential ignition source in this period. However, Season T2 is the 

top touristic period in the Cairngorms, and the identified fire danger hotspots are easily accessible 

via local roads and path networks and in close proximity to most main touristic areas along the Spey 

and Dee rivers. Pressure from tourism and increasing visitor numbers can increase the likelihood of 

accidental ignitions and hence increase fire danger and risk in the identified hotspot areas.  
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a) 

b) 

c) 
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Figure 19. Boxplots of calculated Season T2 daily Fire Weather Index values by predicted Fire Danger 
classes for a) Broadleaves b) Conifers c) Heather and b) Bog areas in the Cairngorms National Park. 

 

Season T3 Fire Danger Assessment 
There was a further, substantial increase of hotspot areas, i.e., >10% days falling within the 

Moderate or High fire danger class in Season T3, which covers the period from October to 

December. Overall, 8,076 250m grid cells were identified as fire danger hotspots, covering an area of 

~504 km2 or 13% of the study area, with ~ 10% of these grid cells having >20% or >6 days a month on 

average falling within the Moderate Fire Danger class (Figure 20a). In addition, 436 grid cells (~27 

km2) were found to have >10% days falling within the High fire danger class. Regarding fuel type, 

~84% of the fire danger hotspot area was covered by Heather, with almost all of the remaining area 

being covered by Bogs (~14%) (Figure 20b). The identified fire danger hotspots were located in four 

main areas: a) the area north and northwest to Grantown on-Spey, especially the hills north of 

Dulnain Bridge where most of this area had >20% days falling within the Moderate or >10% falling 

within the High Fire Danger class; b) the area between Strathspey to the west, Strath Avon, Hills of 

Cromdale and Auchnarrow to the east; c) the northern hillslopes of the river Dee from around 

Dinnet to the east to Braemar to the west, including the hills in Glen Gairn and the south-facing hills 

between Ballater and Easter Balmoral, and d) the west-facing hillslopes of the river Spey between 

Newtonmore and Kingussie and around the Coylumbridge area. Most of the fire danger hotspot area 

was covered by peaty podzols and peaty gleys (HOST15, 37%), followed by upland blanket peat 

(HOST29, 31%) and upland mineral soils such as humus-iron podzols (HOST17, 11%). Also, 60% of 

this area was located in Remote Rural Areas based on the Urban Rural classification (Fold=7) and 

39% in Very Remote Rural Areas (Fold=8). Around 60% to 65% of all Season T3 days in the 2020 - 

2049 period with Moderate or High fire danger occurred in October, followed by 28% and 37% in 

November for Moderate and High fire danger, respectively. 

As previously, fire danger increased as elevation decreased in hotspot areas and for the whole CNP 

areas as well that were covered by Heather and Bogs (Figure 21 and Appendix A2), but elevation’s 

effect was more prominent in distinguishing between low and high fire danger in areas covered by 

Bogs, where mean elevation in areas with simulated Moderate or High simulated fire danger ranged 

from 366m to 706m,  while for Very Low and Low fire danger mean elevation ranged from 592m to 

733m. Fire weather, especially FFMC and DC, seemed to be a more important driver of fire danger 

d) 
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predictions than elevation or slope in areas covered by both Heather and Bogs (Figure 21). In the 

identified fire danger hotspot areas, mean FFMC in areas covered by Heather and Bogs was 64 to 68 

for Moderate to High fire danger, compared to 37 and 44 for Very Low and Low fire danger. 

Interestingly, the 5th percentile values of FFMC in hotspot areas covered by Bogs and Heather were 

much higher for Moderate to High fire danger (36-53) compared to Very Low to Low fire danger (14-

17), indicating little overlap between fire danger classes and low levels of confusion. These FFMC 

thresholds for both fuel types were also very similar for all fire danger classes to when the whole 

CNP area was assessed (Appendix A2). DC, which represents moisture at deep, organic layers, 

seemed to be a more important driver of fire danger than FFMC. 5th percentile, mean and 95th 

percentile values in Bog areas with Moderate to High fire danger was 58 and 136, 193 and 212 and 

326 and 292, respectively, compared to 0.7 and 2.5, 17 and 94, and 63 and 237 for Very Low and 

Low fire danger, respectively. As with FFMC, these DC thresholds were similar when the whole CNP 

area was assessed. Similarly, for hotspots covered by Heather, 5th percentile, mean and 95th 

percentile values in Bog areas with Moderate to High fire danger was 72 and 145, 198 and 234 and 

319 and 316, respectively, compared to just 0.9 and 3, 17 and 97, and 64 and 230 for Very Low and 

Low fire danger, respectively. Again, these thresholds were when the whole CNP area was assessed. 

It has to be noted, that only 10 ignition/fire training samples were available for Season T2, extracted 

from only three burnt areas with Heather in eastern Scotland with fire dates in October 2018. This 

was because fires in late autumn and early winter are rare in the historical database. However, as 

demonstrated by the fire danger simulations, the model has the capacity to extrapolate and identify 

sensible patterns for under-represented combinations of fuel types and fire seasons. The calculated 

fire weather indices and simulated fire danger indicate an increase in the frequency of dry days and 

warmer conditions in late autumn and early winter in the study area. It is possible that the extent of 

the fire danger hotspot areas for Season T3 is overestimated due to the small number of samples 

used, however the model results strongly indicate a trend of increasing fire danger in the CNP for the 

2020 -2049 period.  In addition, combining the identified fire danger hotspots and mapped muirburn 

areas revealed their extensive spatial co-occurrence, with 76% and 65% of hotspot areas covered by 

Heather and Bogs, respectively, located in areas where muirburn is expected to occur. Season T3 is 

within the standard muirburn season in Scotland (October 1st to April 15th), so muirburns can be 

considered as a potential ignition source in this period that might further increase fire danger and 

fire risk in the study area in the future. 
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Figure 20. Map of a) Proportions (%) of Season T3 days within the Moderate Fire Danger Class and b) 
Fuel Type of areas falling within the Moderate or High Danger Class for >10% of Season T3 days, for 

the 2020-2049 period in the Cairngorms National Park. 

a) 

b) 
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Figure 21. Boxplots of calculated Season T3 daily Fire Weather Index values by predicted Fire Danger 

classes for a) Heather and b) Bog areas in the Cairngorms National Park. 
 
 

Independent model validation 
Further model accuracy assessment to the one conducted via internal model validation using left-out 

samples (i.e., not used for model training) can be done using external model validation by simulating 

fire occurrence probabilities in new burnt areas that were not used for model training. This type of 

validation requires access to daily time-series (up to 2 months prior to the fire date) of climatic 

variables required for calculating the fire weather codes/indices from the meteorological stations 

nearest to the fire, and collation of the necessary spatial data layers described in Table 2. To 

demonstrate how this approach can be used for external accuracy assessment of the fire danger 

model, we simulated probabilities of fire occurrence for the recent (early April 2025) fire in Glen 

Trool in Galloway (Figure 22). This fire occurred during a warm and dry spell that lasted for almost 

two weeks in April 2025, and, according to EFFIS, burned 6,249 ha of mainly moorland vegetation, 

along with patches of conifer forestry at the burnt area perimeter. Climatic variables for fire weather 

a) 

b) 

a) b) 
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code calculation were not available, so we relied on indicative values extracted from the EEFIS fire 

danger forecast system5 for the specific date of fire initiation (April 4th 2025), calculated based on 

the ECMWF numerical weather forecast model (8 km resolution). EFFIS classifies fire weather code 

values based on thresholds common to the whole area of application (currently Europe, Middle East 

and North Africa) so we could only extract indicative and not actual values for the Glen Trool fire. 

However, with the exception of FFMC and ISI, these danger classes are based on thresholds that are 

not appropriate for Scottish conditions. Based on this source, FFMC was High (86.1 – 89.2), ISI was 

Very High (7.5 – 13.4), DMC was Low (<15.7), DC was Low (<256) and FWI was Low (<11.2). The 

FFMC and ISI classes were considered sensible and indicated the prevalence of warm and dry and 

windy conditions, and hence we used the lower limits (FFMC=86.1 and ISI=7.5). However, for the 

DMC, DC and FWI classes we used our expert opinion and used DMC=8, DC=125 and FWI=3. We also 

used a value of 15oC for daily temperature based on the average forecasted value from the Met 

Office website and assumed that no rainfall had occurred that day. Remaining covariate values for 

the burnt area were extracted from the land cover, terrain, soil, urban classification and region data 

layers, harmonised at 50m grid cell resolution, and along with the fire weather and temperature and 

precipitation values for the whole of the burnt area were inputted in the model and probabilities of 

fire occurrence were generated.  

 

 
Figure 22. a) Burn scar of the Glen Trool fire on the day of fire initiation (April 4th 2025) (background 

satellite imagery from Copernicus browser6) and boundary of burnt area delineated by EFFIS (April 6th 
2025) and b) probabilities of simulated fire danger on the day of fire initiation. 

 

 
5 https://forest-fire.emergency.copernicus.eu/apps/effis_current_situation/index.html  
6 https://browser.dataspace.copernicus.eu/  

https://forest-fire.emergency.copernicus.eu/apps/effis_current_situation/index.html
https://browser.dataspace.copernicus.eu/
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Figure 22a shows the burn scar while the fire was active on April 4th 2025 and Figure 20b gives the 

simulated fire danger probabilities for that date within the boundary of the total burnt area. We are 

unaware of the exact point of ignition, but it is certain that it is located within the burn scar area on 

the initiation date. Visual inspection of these two figures reveals that the model predicted Moderate 

to High fire danger within the burn scar where fire propagation occurred. The model also identified 

other areas of high danger but based on OS maps, these were less accessible than the area covered 

by the burn scar, which might explain the presence of an ignition source in that area. Therefore, 

despite the use of indicative (but sensible) fire weather and climate values, this assessment shows 

that the model performed well in predicting hotspots of fire danger in the Glen Trool fire area. 

Depending on data availability, conducting more of these external validation exercises could be used 

for providing more confidence on the accuracy of the fire danger simulations.  

Limitations & potential Improvements 
The probabilistic model developed in this study has been found to be performing well for conducting 

large scale spatial assessments and for identifying hotspots of fire danger. However, as with any ML-

based approach, the model’s accuracy depends on the overall quality of the dataset used to train the 

model, in terms of the use of an appropriate sampling design, the selection of informative and 

relevant covariates/predictors, and adequate representation of conditions or processes affecting the 

dependent variable being modelled. The training dataset developed in this study had two main 

limitations, that may have affected the model’s predictive performance: 

• Temporal imbalance: Seasonality is an important factor of fire danger dynamics, both due to 

differences in phenological characteristics of fuel types and the presence of different ignition 

sources in different seasons (e.g., pressures from tourism in summer months). However, most of 

the historical fires/burnt areas used to guide the generation of the train and test samples 

occurred in Season T1 (~70% of train samples) and most on Heather, while there were no 

samples from fires in August and September and only 10 ignition samples in late autumn, again 

only on Heather (Table A1, Appendix). As mentioned above, the model has produced sensible 

extrapolations for different fuel types in different seasons, but conducting more external 

validation in the future would provide further confidence in the model’s predictions. 

•  Lack of recorded ignition points: Scotland is lacking a systematic way of recording wildfire 

ignition locations. In previous work (Gagkas et al., 2021) we have concluded that the SFRS Fire 

Incident Recording System (IRS), although containing valuable information that could be used to 

identify wildfire incidents with some certainty, was not fit for purpose for establishing a 

systematic record of historical wildfires and their characteristics, and provided 

recommendations to the SFRS on how the IRS could be improved for wildfire recording 

purposes. Hence, we used the alternative approach of drawing random samples within known 

burnt areas. This approach is both valid and appropriate for this type of modelling, but it is 

agnostic to the actual location of ignition, which hinders the use of more direct predictors of 

accessibility, such as distance to nearest paths and roads, that have been shown to be important 

for driving the likelihood of ignition. The use of elevation in this study served as an appropriate 

proxy for accessibility in most cases, and visual examination of mapped fire danger classes in the 

CNP showed that most identified hotspots were in proximity to paths and road networks, but 

being able to use calculated distances might have improved model predictions. Also, the 

modelling approach relied on the generation of non-ignition points and the presence of clear 

differences in covariate values between ignition and non-ignition sample points. It is possible 
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that the randomness of the sampling used, although appropriate for this modelling approach, 

could have added more confusion in the training dataset, that might have impacted the model’s 

predictive performance. On the other hand, balancing the number of ignition and non-ignition 

samples by fire date should have improved the representativeness in the train dataset of fire 

weather conditions that drive fire danger in Scotland, and should have helped with the detection 

of patterns in fire weather code values by the algorithm. 

• Use of CFWIS indices: Results showed that the CWFIS codes and indices were informative 

covariates, and fire danger predictions confirmed the presence of established relationships, e.g., 

the combined effect of FFMC and ISI on fire propagation in heather moorlands in late winter and 

spring and the importance of FWI for forest summer fires, but also highlighted the importance of 

other indices, e.g., DC, for driving fire danger in late autumn in heather moorlands and bogs. 

However, as mentioned before, these indices have not been developed for Scottish conditions 

and are not expected to always work relatively well in all fuel type conditions. The reason for 

using the CFWIS approach is that Scotland, and the UK, lacks an effective Fire Danger Rating 

System (FDRS) that can be used to predict wildfire risk and behaviour. Work by Taylor et al. 

(2021) has highlighted the importance of developing and validating a landscape-scale Scottish 

FDRS, tailored towards current land use change dynamics, such new woodland planting and 

natural tree regeneration. The main aims of a Scottish FDRS would be to characterise fuel loads 

(biomass) and field characteristics across representative geographic and phenologically diverse 

vegetation types; determine the flammability of different plant materials and structures under a 

range of climatic and moisture conditions both in the field and laboratory; and develop and 

validate predictive models by statistically relating climatic/weather variables to relevant fuel 

moisture contents, fuel flammability and fire behaviours that could be used to devise fire danger 

rating classes for fire danger forecasting and prevention planning. This statistical model could 

replace the use of CWFIS indices for representing fuel moisture contents and could potentially 

improve fire danger predictions made by models as the one developed in this study. Remote 

sensing technologies, along with assessment of moisture conditions both in the field and 

laboratory, can be utilised to build these new predictive models; a number of vegetation indices 

can be calculated from high resolution satellite imagery that can be used to map the spatial 

variation of vegetation and (top)soil moisture dynamics. These can be statistically related to a 

number of mapped climatic indices as the ones calculated by Rivington and Jabloun (2023), for 

example number of Consecutive Dry Days, that would allow predicting fuel moisture and its 

influence of fire danger both in the short-term (using weather forecasts) and long-term (using 

climatic projections) future.  

• Resolution issues: Model predictions and resulting spatial assessments are influenced by the 

spatial scale or resolution of data layers used for developing the training dataset and spatially 

deploying model predictions, respectively. In this study, the scale and resolution of these data 

layers was appropriate for large scale mapping assessments, mainly for screening purposes such 

as identifying potential hotspot areas of fire danger. Simulating fire danger at a landscape scale, 

which could be of more interest to local authorities and land managers for fire prevention 

purposes, would require models trained at higher resolution to the one used in this study (e.g., 

50m for terrain derivatives), and also deployed to finer resolution than the 250m pixel one used 

for the CNP. Obviously, this would substantially increase the modelling effort and computing 

resources required for running the models, especially if done at daily temporal and national 

spatial levels. On the other hand, the importance of variables known to influence fire 
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propagation, spread and severity, such as the terrain’s aspect and slope (Naszarkowski et al., 

2024), could become more prominent in landscape-scale modelling applications. It is also worth 

noting that land use/fuel type exerts a significant influence on the model simulations and 

consequently on the fire danger assessments. Uncertainties in the mapping of upland fuel types 

need to be resolved, especially between heather, heather grasslands and bogs in heather 

dominated moorlands and peatlands, to provide more accurate fire danger assessments. Also, 

high resolution vegetation mapping would be required if attempting to assess fire danger and 

risk of fire spread at landscape scale in ecosystems in transition such as in areas of woodland 

natural regeneration or areas where rewilding is actively promoted, to ensure that the mosaic of 

fuel types and their connectivity is adequately captured. 

• Static fuel type mapping: Land cover/fuel type composition was held constant during model 

simulations, but major land use and management changes are planned in the CNP related, for 

example, to woodland expansion and peatland restoration. A further improvement to the 

modelling approach could be to feed temporally variable fuel type composition maps, based on 

scenarios as those used in Valette et al. (2023), into the model to generate coupled climate and 

land cover change spatial assessments of fire danger.  

• Methods devised for fire danger assessments: This work produced daily simulations of fire 

occurrence probabilities for a 30-year period (10,800 days) for each of the 66,692 250m grid 

cells covering the extent of the CNP, resulting in more than 720 million individual data points. 

Hence, an important aspect of this job was to find a meaningful way of processing this big 

dataset to facilitate the generation of large scale, spatial assessments of fire danger. For this 

reason, we devised fire danger classes and calculated counts of days falling within these classes 

and their respective proportions for the three selected seasons and defined potential hotspots 

of future fire danger those areas with simulated fire danger being Moderate or High for more 

than 10% of the 2020 - 2049 period. We considered this approach to be sensible and appropriate 

for the purpose of this work because it provided “on average” fire danger conditions for the 30-

year period studied. However, defining fire danger classes using different probability thresholds 

and/or detecting fire danger hotspots using different (lower or higher) proportion thresholds 

would have obviously resulted in different spatial assessments. Also, an alternative approach 

could have been to define hotspots by focusing on the number of consecutive (instead of total) 

days with Moderate and/or High fire danger or by selecting wet vs dry years within the 2020 - 

2049 period to compare fire danger assessments based on contrasting climate scenarios, both 

spatially and temporally. It was not feasible to explore these different options in this work but 

depending on availability of resources these could be the focus of future work.   

Conclusions 
The main conclusions from this study are listed below: 

• The ML-based, probabilistic modelling proved to be an appropriate approach for modelling fire 

danger at large scale and for conducting spatial assessments for identifying hotspots of future 

fire danger in the Cairngorms National Park for the 2020 - 2049 period, despite issues related to 

the representativeness of the training dataset developed and uncertainties related to land 

use/fuel type mapping. 

• The combined use of CWFIS codes and indices showed good potential and some interesting 

patterns emerged from this analysis, but their calculation can be data intensive, and their 
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interpretation complicated, which highlights the need for developing fire weather indices 

specific to Scottish conditions. 

• Hotspots of future fire danger varied by season but were mostly located at the northern and 

eastern areas of the CNP, and along the hillslopes of the Spey and Dee river valleys. Moderate to 

High future fire danger was found to be relatively limited in its extent in heather moorlands in 

the Park during the late winter to early spring period, which currently is the main fire season in 

Scotland when most of fire activity is recorded. This indicates changing climatic conditions within 

the CNP, with wetter conditions increasing the resilience to fire propagation. On the other hand, 

fire danger seemed to increase and be quite extensive in heather moorlands and peatlands 

during late autumn and early winter, indicating the prevalence (on average) of relatively dry 

weather conditions. Results showed that summer forest fires were quite probable for extensive 

areas of the CNP, especially in conifer plantations in the Spey and Dee valleys and adjacent hills. 

It is worth noting that these assessments are based on projections from only one plausible 

future scenario (EM01); use of different climate projections could change magnitudes of fire 

danger and related spatial patterns, but the data are seen7 as being consistent with 11 other 

climate projections (ensemble members) and are representative of the possible direction of 

change in the CNP. 

• Spatial co-occurrence of fire danger hotspots with recognised pressures within the CNP that can 

act as ignition sources could be of major concern in the short-term future. For example, hotspots 

of potential future forest fire activity were located within close proximity to road and path 

networks, and to major settlements that see their population densities and usage greatly 

increase during late spring and summer months due to the popularity of the Park as a touristic 

destination. At the same time, most of the heather moorland area identified as hotspots of fire 

danger in late autumn to early winter is located in land that is managed using prescribed 

burning. It is suggested that these findings, and their associated uncertainties, are taken into 

consideration for future fire prevention planning purposes. 

Next Steps 
Proposed next steps aim to further progress this work and integrate it in frameworks for the 

assessment of impacts on the condition and functions of selected NC assets.  In particular, main 

actions include: 

• Share the report and respective maps with the Cairngorms National Park Authority and 

request their feedback regarding the approach and results, e.g., explore how identified 

future hotspots of fire danger compare to the Authority’s fire incident records and/or local 

knowledge. 

• Continue work on developing methods for condition and functioning assessments for 

selected NC assets and for vulnerability assessments in relation to the threats of 

meteorological drought and fire. 

• Explore ways to progress previous conceptual work towards developing a fire risk modelling 

framework by integrating the fire danger modelling work with condition and vulnerability 

assessments and D5-2 work on wildfire perceptions and mitigation strategies to be used for 

assessing fire impacts on the delivery of ecosystem services from selected NC assets. 

 
7 The James Hutton Institute Climate Data Visualisation 

https://www.hutton.ac.uk/wp-content/uploads/2024/03/D3_1-Risk-Perceptions-report-23-9-22.pdf
https://climatedata.hutton.ac.uk/index.html
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A1. Descriptive statistics of continuous covariates values by Season in the training dataset 

A2. Boxplots of fire danger index, elevation and slope values by fire danger class and month for all 

250 grid cells in the study area. 
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A1. Descriptive statistics of continuous covariates values by Season in the training dataset 

Land Cover/ 
Fuel Type 

Fire Season Count 
Temperature (°C) Precipitation (mm) FFMC ISI DMC 

Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

Broadleaves Yes T1 10 0.56 6.67 13.80 0.00 0.00 0.00 77.64 79.90 81.37 1.16 3.16 4.75 0.74 4.35 10.71 

Broadleaves No T1 48 -3.94 6.27 14.61 0.00 0.76 8.64 19.92 72.28 81.74 0.00 1.95 8.23 0.00 3.76 12.60 

Broadleaves Yes T2 8 9.07 10.83 15.19 0.00 0.00 0.00 79.97 81.02 82.30 1.85 2.08 2.38 5.62 9.72 12.62 

Broadleaves No T2 15 7.38 10.62 15.47 0.00 0.07 1.01 59.29 77.64 82.51 0.51 2.31 4.27 2.23 9.36 18.12 

Conifers Yes T1 23 -0.08 7.78 12.39 0.00 0.03 0.70 70.13 78.93 81.68 0.83 2.84 5.38 0.90 4.96 9.60 

Conifers No T1 188 -4.57 5.19 14.89 0.00 1.19 35.31 20.78 69.93 81.94 0.00 1.98 8.97 0.00 3.03 10.97 

Conifers Yes T2 22 7.83 11.49 16.94 0.00 0.04 0.49 71.98 79.90 82.07 1.11 2.70 4.15 2.31 11.43 24.60 

Conifers No T2 65 5.62 10.64 15.83 0.00 0.38 13.85 38.29 79.24 82.95 0.06 2.74 4.84 1.37 9.46 23.94 

Semi grassland Yes T1 22 0.55 7.21 13.92 0.00 0.01 0.20 73.41 77.84 80.75 1.16 2.19 4.92 0.74 3.41 7.22 

Semi grassland No T1 82 -3.97 5.87 14.32 0.00 0.66 14.67 20.55 72.99 81.82 0.00 2.10 5.77 0.00 3.36 12.70 

Semi grassland Yes T2 11 8.72 10.31 12.51 0.00 0.00 0.00 79.92 80.89 81.56 1.54 2.25 3.06 7.89 11.58 21.60 

Semi grassland No T2 30 5.98 10.08 15.77 0.00 0.17 2.26 66.12 79.20 82.44 0.86 2.47 4.41 2.42 8.98 15.98 

Heather Yes T1 499 -2.47 6.46 14.62 0.00 0.47 9.23 31.90 75.15 81.75 0.01 2.29 7.51 0.04 3.22 10.66 

Heather No T1 339 -5.49 5.01 14.80 0.00 0.82 19.02 20.72 71.93 81.67 0.00 2.20 8.97 0.00 2.63 10.27 

Heather Yes T2 215 4.90 10.56 16.41 0.00 0.02 0.49 62.20 79.20 82.29 0.76 2.18 4.32 2.40 7.35 21.77 

Heather No T2 140 3.96 9.79 16.81 0.00 0.73 16.71 34.36 75.86 82.62 0.02 2.20 5.71 0.54 6.83 18.45 

Heather Yes T3 10 1.64 5.32 8.85 0.00 0.33 0.85 51.20 64.36 75.34 0.54 1.18 2.30 0.50 1.42 2.50 

Heather No T3 6 3.52 5.88 8.32 0.00 0.86 1.92 40.39 56.99 68.34 0.06 0.90 2.08 0.18 0.74 2.39 

Bogs Yes T1 278 -3.63 4.42 12.72 0.00 0.19 18.68 24.87 77.36 81.00 0.00 3.45 8.19 0.11 2.70 9.00 

Bogs No T1 124 -5.33 5.20 14.87 0.00 0.90 37.38 20.20 72.73 81.32 0.00 2.44 11.51 0.00 2.59 8.87 

Bogs Yes T2 93 7.74 11.66 18.06 0.00 0.06 1.10 68.35 75.90 81.94 1.09 1.80 3.75 2.22 5.89 20.27 

Bogs No T2 74 4.51 9.55 16.41 0.00 0.16 4.32 47.41 78.53 82.58 0.29 2.49 5.13 1.73 7.33 17.84 

Montane Yes T1 13 2.90 6.50 11.35 0.00 0.00 0.00 77.79 79.21 80.92 1.12 3.21 8.20 1.99 3.30 5.54 

Montane No T1 72 -6.61 2.97 13.64 0.00 0.87 17.50 27.20 71.91 81.10 0.00 2.77 14.98 0.00 1.49 6.87 

Montane Yes T2 6 6.22 8.00 10.00 0.00 0.00 0.00 78.56 79.38 81.15 1.60 2.43 2.98 2.93 6.22 10.80 

Montane No T2 31 1.18 7.62 15.14 0.00 1.07 16.86 29.87 75.29 82.42 0.01 2.65 5.17 0.39 5.31 12.81 
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Land Cover/ 
Fuel Type 

Fire Season Count 
DC FWI Elevation (m) Slope (radians) 

Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

Broadleaves Yes T1 10 1.07 24.42 55.01 0.36 2.50 5.60 57.10 130.43 244.30 0.15 0.45 0.72 

Broadleaves No T1 48 0.00 20.35 59.40 0.00 1.25 4.64 4.00 106.17 300.60 0.01 0.17 0.63 

Broadleaves Yes T2 8 36.09 55.96 80.41 1.87 2.36 3.56 38.20 99.15 214.60 0.20 0.38 0.62 

Broadleaves No T2 15 42.32 81.18 168.06 0.21 3.02 6.62 38.20 143.63 348.40 0.02 0.21 0.44 

Conifers Yes T1 23 2.62 28.95 58.80 0.24 2.26 6.04 99.40 254.36 348.90 0.01 0.11 0.34 

Conifers No T1 188 0.00 17.91 174.19 0.00 1.26 7.05 5.30 212.75 500.60 0.00 0.15 0.65 

Conifers Yes T2 22 32.58 138.91 337.05 0.49 4.09 7.15 45.50 167.30 281.90 0.00 0.07 0.22 

Conifers No T2 65 5.92 70.61 169.69 0.02 3.47 7.33 12.60 234.64 488.50 0.01 0.14 0.41 

Semi grassland Yes T1 22 0.38 20.12 42.97 0.35 1.12 3.92 47.10 159.73 420.40 0.03 0.22 0.64 

Semi grassland No T1 82 0.00 21.19 168.48 0.00 1.31 5.92 0.00 170.89 457.40 0.00 0.16 0.66 

Semi grassland Yes T2 11 41.18 82.98 225.13 1.51 3.04 5.71 32.00 139.91 318.90 0.04 0.26 0.56 

Semi grassland No T2 30 23.60 71.85 178.33 0.35 3.03 5.94 6.70 228.79 395.30 0.00 0.16 0.54 

Heather Yes T1 499 0.00 19.09 86.50 0.00 1.36 7.18 2.00 207.86 553.90 0.00 0.18 0.77 

Heather No T1 339 0.00 15.42 53.94 0.00 1.28 7.45 15.90 329.08 790.00 0.01 0.21 0.85 

Heather Yes T2 215 20.24 59.81 309.28 0.40 2.13 7.69 28.60 177.71 544.40 0.01 0.18 0.70 

Heather No T2 140 3.50 65.17 282.33 0.01 2.27 7.43 14.50 327.24 697.20 0.01 0.22 0.85 

Heather Yes T3 10 58.23 175.98 260.52 0.20 0.37 0.60 302.00 432.01 678.30 0.05 0.17 0.34 

Heather No T3 6 3.07 104.54 265.51 0.01 0.25 0.51 136.70 330.62 596.40 0.08 0.25 0.35 

Bogs Yes T1 278 0.14 15.52 59.24 0.00 1.89 7.14 4.20 189.43 576.50 0.00 0.09 0.41 

Bogs No T1 124 0.00 16.23 56.76 0.00 1.43 8.34 8.00 309.82 798.80 0.00 0.09 0.64 

Bogs Yes T2 93 21.29 82.03 288.09 0.49 1.52 6.14 54.70 151.14 540.50 0.00 0.06 0.38 

Bogs No T2 74 13.96 65.38 225.24 0.13 2.60 6.89 14.00 344.35 798.80 0.01 0.10 0.29 

Montane Yes T1 13 13.06 20.64 30.06 0.45 1.98 6.09 179.20 386.66 612.70 0.19 0.47 0.84 

Montane No T1 72 0.00 10.67 38.35 0.00 1.33 10.70 201.70 683.59 1053.70 0.05 0.34 0.72 

Montane Yes T2 6 23.11 43.75 61.03 0.94 2.08 3.23 360.90 513.63 627.70 0.15 0.60 0.95 

Montane No T2 31 3.65 47.58 120.37 0.00 2.39 6.45 201.70 672.08 1165.80 0.05 0.29 0.51 
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A2. Boxplots of fire danger index, elevation and slope values by fire danger class and 

month for all 250 grid cells in the study area. 
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