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Executive summary 
 

This is a comprehensive report on assessing environmental risks associated with the 
agricultural use of sewage sludge, focusing on the impacts of unregulated microplastic, organic 
chemical and pharmaceutical contaminants on soil health. This report, prepared by the James 
Hutton Institute at the request of Fidra, revisits the risk assessment conducted in 2018 for the 
Scottish Government that assessed risks to human and environmental health. This assessment 
of the environmental impacts of microplastics, organic chemical and pharmaceutical 
contaminants found in sewage sludge is an important resource for policy makers, regulators, 
industry, academic and environmental NGO stakeholders. 

Key Highlights: 

Background 

Treated sewage sludge, often referred to as biosolids, is commonly used as a soil amendment in 
agriculture due to its low cost and nutrient content, especially nitrogen and phosphorus. 
Around 87% of the 3.6 million tonnes of sewage sludge produced in the UK is recycled for 
agricultural purposes. Despite the potential nutrient benefits, sewage sludge also introduces 
potentially hazardous contaminants, with regulation focusing on heavy metals. More recent 
attention has shifted to the unregulated microplastics, organic chemicals and pharmaceuticals 
and personal care products (PPCPs). The evolving nature of our scientific understanding of 
contaminants necessitated the reassessment of risks posed by biosolids to soil health and the 
wider environment. 

Project Scope and Objectives 

The reassessment aimed to update and extend the 2018 risk assessment by focusing on 
unregulated contaminants, investigating their impacts on the environment, particularly soil 
health.  The key contaminants of concern included: 

• Microplastics and fibres 
• Organic and other emerging chemicals  
• Pharmaceuticals and personal care products (PPCPs) 

 
Although focussing on the environment rather than human health, this reassessment used the 
same approach as the 2018 risk assessment, consisting of four stages: hazard assessment, 
exposure assessment, dose-response analysis, and risk characterization. The focus was on 
microplastic and chemical contaminants in soils, but risks to water quality and human health 
were also considered where relevant. 

Microplastics and Fibres 

Microplastics, defined as synthetic polymers smaller than 5 mm, have been widely detected in 
all ecosystems, with significant quantities entering agricultural soils through sewage sludge 
application. Research indicates that microplastics alter soil properties, microbial activity, and 
can harm soil organisms through ingestion and other means. In this report, microplastics were 
found to accumulate in soil, and repeated applications of sewage sludge could result in 
appreciable risks to soil biota over time. 
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Organic and other emerging chemicals  

Organic chemical contaminants include persistent organic pollutants (POPs) such as PCBs, 
PAHs, and PFAS. These contaminants often bioaccumulate in soil and biota, presenting 
significant environmental risks. The report highlights the presence of these pollutants in sewage 
sludge and their potential long-term accumulation in soils due to repeated applications of 
biosolids. Particular focus was placed on PFAS due to their widespread use and persistence in 
the environment. 

Pharmaceuticals and Personal Care Products (PPCPs) 

The report also evaluates the risks posed by pharmaceuticals and personal care products 
(PPCPs), which enter wastewater through consumer use. These substances have been detected 
in sewage sludge and pose risks to soil health and biota, though the exact mechanisms and 
impacts are still being studied. This reassessment sought to provide updated toxicity metrics 
and exposure estimates for these contaminants. 

Methodology 

The risk assessment followed a classical quantitative risk assessment (QRA) approach, as used 
in the 2018 study. The process involved: 

1. Hazard Identification: Identifying and prioritizing hazardous agents in sewage sludge, 
especially those that had emerged post-2018. The assessment included three key 
categories of contaminants: microplastics, organic chemicals, and PPCPs. 

2. Exposure Assessment: Estimating the concentration of hazardous agents in soil, 
following the application of sewage sludge, that could encounter soil biota. This 
involved modelling the distribution of contaminants between different soil 
compartments (air, water, and sludge-amended soil) using fugacity modelling. 

3. Dose-Response Assessment: Evaluating the toxicity of identified hazards by deriving 
metrics such as predicted no-effect concentrations (PNEC) for soil biota. The 
assessment used published toxicity data and applied assessment factors to account for 
uncertainty. 

4. Risk Characterization: Comparing predicted exposure levels to toxicity thresholds 
(PNECs) to estimate the risk to soil organisms. Relative risk (RR) was calculated, with RR 
values greater than 1.0 indicating a potential for adverse effects. 

 

Key Findings 

Microplastics 

Microplastics in sewage sludge present a potential risk to soil health, particularly after repeated 
applications of sludge. While a single application of sewage sludge was found to pose minimal 
risk, multiple applications could result in significant accumulation of microplastics in the soil. 
The report recommends minimizing the input of microplastics into soils by improving 
wastewater treatment processes and through source control measures to reduce plastic use in 
consumer products. 
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Organic and other emerging chemicals  

The report underscores the risks associated with persistent organic pollutants (POPs), 
particularly PFAS and PCBs, which can accumulate in soils and have long-term environmental 
impacts. The risk characterization for these substances resulted in certain organic 
contaminants demonstrating elevated risk ratios, that could impact soil health. The study 
recommends further research into the long-term fate of these contaminants in agricultural soils 
and stricter regulations to limit their release into wastewater systems. 

Pharmaceuticals and Personal Care Products (PPCPs) 

PPCPs present risks to soil health, with the study showing potential for accumulation in soil 
biota over time. A number of PPCPs demonstrated elevated risk ratios, suggesting significant 
risk to soil health. The report highlights the need for more research on the environmental fate of 
PPCPs and recommends precautionary measures to reduce their presence in sewage sludge. It 
also advocates for the development of new treatment technologies that can effectively remove 
PPCPs from wastewater, and improved source control.  

Recommendations 

1. Adopt the Precautionary Principle: Given the persistence, bioaccumulation potential and 
emerging nature of many contaminants, the findings of this report suggest precautionary 
measures are needed to protect soil health and the wider environment. This may involve 
limiting the application of sewage sludge on agricultural land until more comprehensive risk 
data are available and includes adopting recommendations 2 – 7. 

2. Improve Wastewater Treatment: Given the risks from contaminants and uncertainties 
identified in this report enhancement of wastewater treatment processes to reduce the 
levels of contaminants is needed, especially microplastics, organic chemicals, and PPCPs, 
in sewage sludge. This includes upgrading treatment facilities and introducing stricter 
regulations on pollutant discharge. 

3. Increase Research on Emerging Contaminants: Further research into the environmental 
risks posed by unregulated microplastic and emerging chemical contaminants is needed. 
More data of improved accuracy and reproducibility will enhance our understanding of long-
term impacts of these substances on soil biota and the wider environment. 

4. Regular Monitoring of Contaminant Levels: ongoing monitoring of chemical and 
microplastic contaminant levels in sewage sludge and agricultural soils is needed to help 
identify trends in contamination and enable timely interventions to minimise environmental 
damage. 

5. Develop Alternative Treatment Technologies: To address the limitations of current 
wastewater treatment systems, new technologies for removing persistent and other 
contaminants from sewage sludge should be explored. 

6. Develop Enhanced Quality Standards: Encourage upstream source control solutions for 
reducing and/or eliminating contaminants in sewage sludge before recycling to land. 

7. Improved Sludge Use in Agriculture Policies: Widen scope of regulations to enforce 
appropriate management strategies and best practice to ensure soil health and the wider 
environment are protected from a more comprehensive range of contaminants. Build in 
flexibility and review processes, so that regulations adapt to changes in the contamination 
profile in a timely manner.  
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Conclusions 

The reassessment of environmental risks from sewage sludge highlights significant concerns 
regarding the accumulation of contaminants, particularly microplastics, organic chemicals, 
and pharmaceuticals, in agricultural soils. While the application of sewage sludge may provide 
nutrients and organic matter to the soil, the risks posed by unregulated microplastic and 
chemical contaminants necessitate caution.  The findings suggest enhanced regulation, 
improved wastewater treatment, alternative treatment technologies, enhanced quality 
standards, robust monitoring and further research are needed to ensure the safe and 
sustainable use of sewage sludge in agriculture. 
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Using new contaminants information to 
re-assess environmental risks from 
sewage sludge 

1. Introduction and methodology 
 

1.1. Background 
Treated sewage sludge, also known as biosolids, has been recycled to agricultural land for many 
decades in the UK, Europe, the USA and beyond. The most frequently cited data suggest that 
about 87% of the 3.6 million tonnes (fresh weight) of sewage sludge produced in the UK is 
currently recycled to agricultural land (Black et al., 2016; BAS, 2024). This 87% roughly equates 
to £25M equivalent in inorganic fertiliser costs (September 2022 prices). Sewage sludge is a 
source of nitrogen and phosphorus, as well as other major and minor plant nutrients. Sewage 
sludge can also have value as a liming agent, but this is dependent on production methodology 
(SRUC, 2013). Sewage sludge also contains organic matter and is therefore a practicable 
approach to replenishing soil organic matter levels providing long-term benefits to soil structure 
and fertility. Therefore, the recycling of sewage sludge to land is widely recognised as being the 
best practicable environmental option by the UK Government in most circumstances. 

Despite these benefits and proponents, the application of sewage sludge to land has always 
been associated with the introduction of potentially hazardous agents to the soil environment, 
with the potential to enter food chains and aquatic environments. Contaminants get into 
wastewater streams via legitimate industrial activities and use of consumer products, as well 
as clandestine non-compliant activities. The nature and knowledge of these hazards has 
changed over the decades and this evolution can be summarised as focussing on heavy metals 
four decades ago to now researching a huge spectrum of organic chemicals and emerging 
contaminants. While efforts have been made to regulate some contaminants (such as heavy 
metals) other specific contaminants (such as PFAS) have risen to prominence. Any increased 
concerns around chemical contaminants are due to a variety of factors. These include changes 
in regulations surrounding manufacture of specific chemicals, the use of a wider variety of 
synthetically manufactured chemicals in our consumer products, food, and medicines, 
developments in water treatment, and technological developments in analytical (bio)chemistry 
that have enabled a far greater suite of contaminants to be studied at increasingly lower 
concentrations. In addition, advances in our knowledge and understanding of specific issues 
such as microplastics and anti-microbial resistance has occurred. The practice is also 
associated with malodour and can be perceived negatively by the general population. Sewage 
sludge is an organic fertiliser and soil conditioner, but it also has negative impacts that cannot 
be ignored.   

In this context, partly due to complaints and concerns from communities reporting potential 
issues associated with the recycling of sewage sludge to land, a review of the existing 
legislation and procedures relating to the spreading of sewage sludge to land was 
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commissioned in 2014 (Scottish Government, 2016). This work was overseen by Scottish 
Government, SEPA and Scottish Water and brought forward various recommendations. One key 
recommendation focused on the potential human health impacts associated with the 
spreading of sewage sludge and the lack of up-to-date, robust evidence. Several gaps in current 
knowledge, such as antimicrobial resistance, microplastics, pharmaceuticals and personal 
care products (PPCPs), as well as odour were highlighted for specific attention. 

In response, in 2016, the James Hutton Institute along with RSK-ADAS and AquaEnviro were 
commissioned to significantly update and extend the (at the time) existing 2008 sewage sludge 
risk assessment (SNIFFER, 2008). This work was delivered in 2018 (Scottish Government, 2018) 
but not published online until October 2021. 

This report provides an update to these previous studies with a focus on risks to soil health for 
chemical contaminants and microplastics.  

 

1.1.1. Precautionary approach and circular economy concerns 
Many environmental NGOs, governments and academic experts recognise that lack of data 
does not equate to lack of risk and therefore advocate for the adoption of the precautionary 
principle where policy action should be taken if there is a credible danger of significant harm to 
the environment but no scientific certainty regarding the risks (Fidra & Environmental 
Investigation Agency, 2024) .  This is in line with the UK’s Environment Act and UK’s legally 
binding Environmental Principles Policy Statement. There are also concerns that contaminated 
sewage sludge use in agriculture represents a barrier to Scotland’s (and the rest of the UK’s) 
future vision of healthy productive soils and a safe, clean circular economy, especially where 
emerging scientific evidence supports the need for updated risk analysis. 

 

1.1.2. Report scope and objectives 
This updated risk research report utilised data published since 2018 to re-assess, re-analyse 
and update the risk analysis components of the sewage sludge research completed six years 
ago (Scottish Government, 2018). While the 2018 assessment had a focus on human health 
impacts (primarily) via the terrestrial food chain, this project has particular focus on impacts to 
the soil and wider environment.  

This project follows the same classical risk approach as adopted for the 2018 assessment 
(Scottish Government, 2018), namely four stages; hazard assessment, exposure assessment, 
dose-response analysis, and risk characterisation. The focus was chemical contaminants, 
although other hazards such as microplastics were included. This project had the following 
objectives: 

1. Update the original hazard screening literature review undertaken for the 2018 risk 
assessment, this is to identity new and emerging hazards present in sewage sludge, as 
well as to identify new sources of data for hazards that were poorly understood during 
the 2016 – 2018 project. The hazard screening will be mindful of the change in scope 
towards an emphasis on impacts to soil health and the wider environment. All identified 
hazards will be qualitatively screened for relevance to the scope (presence in sewage at 
levels of concern, ability to present an exposure of environmental concern, etc.) prior to 
being passed to the latter stages of the assessment. Specifically, the project included: 
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a. Microplastics and fibres – to identify if there are new data available, specifically 
information on the mobility of microplastics via exposure routes which were 
absent during the 2016-2018 assessment. 

b. Organic and other emerging chemicals – this is a fast-moving area of 
environmental chemistry, both in terms of number and range of chemicals now 
being measured, and in terms of toxicological understanding of those 
chemicals. Significant changes/updates are expected to this category of hazard 
compared to 2018. 

c. Pharmaceutical and personal care products – this is also a fast-moving area of 
environmental chemistry, and we would also expect significant updates 
compared to 2018. 

2. Estimate potential exposure for new and updated hazards identified above (1a – c). This 
will be undertaken for those hazards that pass through the screening process and are 
therefore likely to present an exposure of concern to receptors via e.g., the food chain. 
Key receptors will be identified as part of the project, but it is envisaged that soil biota 
will be a key receptor associated with risks to soil health/function.  

3. Evaluate the toxicity of the identified hazards. For quantitative risk assessment, we are 
particularly interested in metrics of toxicity such as reference doses or published no 
effects levels from experimental data. We anticipate very different types of information, 
and quality of information, for each of the identified hazards. We will account for this by 
providing an indication of uncertainty for each toxicity metric. 

The final objective is the risk characterisation of the identified hazards. This will only be 
performed where the underlying data are considered suitable for making a reasonable risk 
estimate. As with objective 3, while leaning towards pragmatism using the precautionary 
principle, an indicative level of certainty will be provided for each risk estimate.  

 

1.2. General methodology 
This section provides an overview of the methodology used within this generalised Quantitative 
Risk Assessment (QRA). Specific details and assumptions for individual potentially hazardous 
agents are described further in Sections 2 – 4. 

The aim of this work was to undertake a quantitative risk assessment that establishes the 
potential for harm to soil biota resulting from the application of sewage sludge products in 
agriculture. The assessment considered a range of treatment and processing parameters, as 
well as different agricultural end uses (Table 1.1). 
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Table 1.1 - Summary of sewage sludge products and end use parameters used to constrain 
input data to the quantitative risk assessment. 

Input materials Treatment Method End Use Parameters 
• Thickened sludge from 

primary and secondary 
water treatment 

• Conventionally 
(anaerobically) digested 
and dewatered cake 

• Dewatered raw cake with 
limed pasteurisation (lime 
caked) 

• Thermal hydrolysis 
pasteurisation (THP) 
digested and dewatered 
cake 

• Agriculture (grazing land) 
• Agriculture (land used to 

grow grain/root/leafy crops 
for animal consumption) 

• Agriculture (land used to 
grow grain/root/leafy crops 
for human consumption) 

 

This assessment only considered sewage sludge that has been produced under regulatory 
control. Activities outside of this specification, including unauthorised contamination of 
feedstocks and illegal use of sewage sludges, have not been considered. This assessment 
examines potential risks to soil biota from a specified and regulated product, and therefore 
does not make predictions about system failure, bypass of processing systems, or illegal 
activities. The assessment did not consider contamination already present in the receiving 
environment. As such, this assessment estimates additional risks associated with sewage 
sludge as a product and makes no attempt to compound these risks with existing environmental 
conditions. 

The assessment was undertaken using the classical model for QRA. This approach has been 
widely adopted, including by relevant UK agencies such as the Department of the Environment, 
Food & Rural Affairs (DEFRA), the Institute of Environment and Health (Defra, 2011), and was the 
approach adopted by the 2018 assessment (Scottish Government, 2018). Throughout the 
assessment process, realistic worst-case assumptions were adopted. The phrase realistic 
worst case, and its definition, have been developed by the author and applied in many 
generalised risk assessments (e.g., see Qvarforth et al., 2022; Stubberfield et al., 2022; Mitchell 
et al., 2020; Longhurst et al., 2019; Beesley et al., 2018; Troldborg et al., 2017; Mollon et al., 
2016; Zhang et al., 2015; Avery et al., 2012; Minh et al., 2012;  Hough et al. 2004, 2006, 2010 and 
2012). The purpose of a realistic worst case, as opposed to a worst case, is to support 
precautionary decision making. This means that the risks are examined under unusual but 
legitimate scenarios. If an agent is deemed to pose little risk under these circumstances, then 
there is confidence that it poses little risk under most circumstances. If, however, an agent 
poses a risk under the realistic worst-case scenario, it is a plausible outcome and indicates that 
further investigation is required before real-world implementation of such a scenario. 

The standard QRA model involves four key stages, namely hazard identification, dose-response 
assessment, exposure assessment, and risk characterisation. Briefly, the hazard identification 
comprises a literature-based review to identify which hazards, if any, are of most concern/most 
likely to pose a risk; the dose-response assessment is used to characterise the magnitude of 
effect likely to result from a specific exposure to specific hazards; the exposure assessment 
determines the extent to which receptors (i.e., soil biota) are exposed to the hazards of concern; 
finally the risk characterisation quantifies the level of risk, i.e., the probability that exposure to a 
specific hazard will result in a specific adverse outcome. The risk characterisation may then be 
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used to inform risk management, i.e., management of risk factors to reduce impacts of 
causative agents. 

While the original 2018 assessment (Scottish Government, 2018) considered six categories of 
potentially hazardous agents, the current assessment will attempt to update three of these, 
namely microplastics and fibres, organic and other emerging chemicals, and pharmaceuticals 
and personal care products (PPCPs); Table 1.2. It was considered that these three categories 
were of most pertinence to the aims and objectives of Fidra and their existing projects. 

 

Table 1.2 – Categories of potentially hazardous agents associated with sewage sludge 

Categories of Potentially Hazardous Agent included in this Assessment 
 
Microplastics and Fibres defined as synthetic polymers measuring less than 5 mm in 
diameter (i.e., largest dimension) – Section 2 
 
Organic and other emerging chemicals including perfluoroalkyl and polyfluoroalkyl 
substances (PFAS), polychlorinated biphenyls (PCBs), dioxins and furans, flame retardants, 
plasticisers, synthetic phenolic compounds, etc. – Section 3 
 
Pharmaceutical and Personal Care Products (PPCPs) including anti-inflammatories, anti-
epileptics, antihistamines, selective serotonin reuptake inhibitors (SSRIs), antacids, 
antibiotics, caffeine, etc. – Section 4 
 

 

1.2.1. Hazard identification 
The approach adopted for the hazard identification was the same as that used for the 2018 
assessment (Scottish Government, 2018) and used successfully in previous projects assessing 
risks from soil amendments (Longhurst et al., 2019; Hough et al., 2012). The 2018 assessment 
undertook a comprehensive process of identifying all possible hazards that might be present in 
sewage sludge, and then reducing this list by applying a series of filters (as per the methodology 
of Pollard et al., 2008) to reduce the long lists down to a shorter priority list. It was not the 
intention of the current assessment to fully repeat this hazard screening exercise, and the 
priority lists identified by Scottish Government (2018) were adopted by the current assessment. 
Concentrations of the priority hazards measured in sewage sludge were updated relative to the 
2018 assessment. It was decided that potentially hazardous agents should be added to the 
2018 priority lists where they had emerged post-2018 (n = 0) and where emerging chemicals of 
high priority were not included in the existing priority lists (n = 8, all classified as organic 
contaminants). Full details of the hazard screening approach can be found in Scottish 
Government 2018. 

1.2.2. Exposure assessment 
The purpose of the exposure assessment was to estimate the concentration of each hazardous 
agent that had the potential to come into contact with receptors, namely soil biota. Given the 
range and complexity of soil biota, no specific exposure routes (ingestion, contact, etc.) were 
defined or modelled. To this end, the exposure modelling estimated the predicted effect 
concentration (PEC, mg kg-1) of each hazard in the soil. Estimating the PEC was achieved in one 
of two ways. For the microplastics and fibres, levels of microplastics in soil were determined as 
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the mass balance between the concentration introduced via the application of sewage sludge 
and the concentration of microplastics leaving the soil matrix (primarily via leaching). For the 
organic and emerging contaminants, and PPCPs, multi-media fugacity modelling was 
implemented. This approach aimed to estimate the partitioning of these pollutants within the 
soil, indicating what proportion is likely to remain in the soil matrix relative to what is leached or 
volatilised from the system. 

To make the fugacity calculations, a three-compartment soil matrix consisting of: air (A, pore 
space), water (W, soil pore water), and sewage sludge amended soil (SS) was modelled as per 
Hough et al. (2012). If these compartments are assumed to be in equilibrium, the total mass of 
a specific potentially hazardous agent in the system (T, mol) can be described by: 

𝑇𝑥 = 𝑉𝐴𝐶𝐴 +  𝑉𝑊𝐶𝑊 +  𝑉𝑆𝑆𝐶𝑆𝑆                    (Equation 1.1) 

Where Tx is the total mass of the agent of interest in the system, V represents the volume of each 
compartment (m3), and C represents the concentration of each agent of interest in each 
compartment (mol m-3). If the total mass of the agent of interest Tx is known, Equation 1.2 – 1.4 
can be used to estimate the partitioning of the agent of interest between the three phases (A, W, 
SS) within the soil matrix. 

To quantify the equilibrium between the compartments, the relationships between CA, CW, and 
CSS were estimated by deriving partition coefficients (Equations 1.2 and 1.3): 

𝐶𝐴 = 𝐻𝐶𝑊                                                         (Equation 1.2) 

𝐶𝑆𝑆 = 𝑘𝑑𝜌𝑏𝐶𝑊                                                 (Equation 1.3) 

Where H is the Henry’s Law constant, Kd is the distribution coefficient in soil, L kg-1, and b is the 
bulk density, kg L-1. 

The partition coefficients can be used to characterise the distribution of the agent of interest 
within the system (Equation 1.4): 

𝑇𝑥 = 𝑉𝐴𝐻𝐶𝑊 + 𝑉𝑊𝐶𝑊 + 𝑉𝑆𝑆𝜌𝑏𝑘𝑑𝐶𝑊      (Equation 1.4) 

Subsequently, the fractions of the agent of interest in water (Wx), air (Ax), and sludge-amended 
soil (SSx) can be derived from Equation 1.5 – 1.7: 

𝑊𝑥 =
𝑉𝑊

(𝑉𝑊+𝐻𝑉𝐴+𝜌𝑏𝑘𝑑𝑉𝑆𝑆)
                             (Equation 1.5) 

𝐴𝑥 =
𝐻𝑉𝐴

(𝑉𝑊+𝐻𝑉𝐴+𝜌𝑏𝑘𝑑𝑉𝑆𝑆)
                              (Equation 1.6) 

𝑆𝑆𝑥 =
𝜌𝑏𝑘𝑑𝑉𝑆𝑆

(𝑉𝑊+𝐻𝑉𝐴𝜌𝑏𝑘𝑑𝑉𝑆𝑆)
                               (Equation 1.7) 

Finally, following realistic worst-case assumptions, the predicted effect concentration (PEC) 
was considered to be: 

𝑃𝐸𝐶 = 𝑆𝑆𝑥 + (𝑊𝑥 − 𝐿)                               (Equation 1.8) 

Where L represents loss from the system due to leaching. 

To parameterise Equation 1.1, the volumetric composition of the sewage sludge-amended 
agricultural soil was derived using a simple ploughing model by assuming a unit area of 1 m2 
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and a plough depth of 0.25 m in order to calculate a total working volume of 0.25 m3. These, and 
other parameters are detailed in Table 1.3. 

 

Table 1.3 – Input data set for the standard model for the calculation of the Phase I fugacity 
equilibrium (Equations 1.1 – 1.7), normalised to 0.25 m3 soil. From Trapp and Legind (2011). 

Symbol Input [unit] Value 
Fugacity equilibrium 

RA Sewage sludge application rate (fresh weight) [t ha-1] 50 
A Unit area [m2] 1 
SS Sewage sludge bulk density [kg l-1] 0.6 
VSS Applied sewage sludge volume [m3] 0.0083 
Pd Plough depth [m] 0.25 
V Soil-air-water volume [m3] 0.25 
A Air content of soil 0.1 
W Water content of soil 0.3 
N Total porosity 0.4 
VS Soil volume [m3] 0.15 
foc, soil Fraction of organic carbon in soil 0.05 
Foc, ss Fraction of organic carbon in sewage sludge 0.5 
Pa Partial/vapour pressure [Pa] 9900 
T Temperature [K] 298 
R Gas constant [J(molK)-1] 8.313 
S Solubility in water [mg l-1] 300 
b Soil bulk density [kg l-1] 1.6 
KOW Octanol:Water partition coefficient [l kg-1] 3.32 
KOC Organic carbon distribution coefficient [l kg-1] 

=10^(1.04 log(KOW) – 0.84) 
410.02 

fOC Fraction of organic carbon in mixed system 
= (VS fOC, soil + VSS fOC, SS)/(VS + VSS) 

0.068 

kd Distribution coefficient in soil [l kg-1] 
=KOC fOC 

27.88 

H Henry’s Law constant [dimensionless] 
=(PaMW/(RT)/S) 

1.75 

Sewage sludge application rate based on expert judgement and previous investigations (WRAP, 
2016; Hough et al., 2012). 

 

1.2.3. Dose-response assessment 
Dose-response data describe the magnitude of an outcome (response) in relation to the 
magnitude of a dose (exposure) of a specific agent. With the focus of this assessment being 
impacts on soil biota, the main interest was to be able to derive a predicted no-effect 
concentration for soil biota (PNECsoil) with reasonable confidence. Primarily, for the agents 
studied, this meant identifying published PNECsoil values and critically appraising their 
derivation. 

Values of PNEC are generally derived using two methods, the assessment factor (AF) method, 
and the species sensitivity distribution (SSD) method.  
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The AF method uses data from ecotoxicological studies where organisms are exposed to 
different levels of an agent, and the outcome (mortality, morbidity) is recorded. While there are 
some instances where in-situ data are available, most ecotoxicological studies are laboratory 
based. Several groups of organisms are used so that several exposures of different magnitude 
can be administered, and a dose-response curve obtained. The lowest toxicity value from this 
dose-response curve (e.g., the lethal concentration where 50% of organisms die (LC50), half the 
maximal effective concentration (EC50), or the no observed effect concentration (NOEC)) is 
then divided by an AF that typically ranges between 10 to 1000 depending on the quantity and 
quality of the dose-response data. 

The values of AF are designed to account for uncertainties in the dose-response data. Many 
ecotoxicological experiments use levels of the agent of interest far greater than environmental 
levels in order to achieve an observable response in a limited number of study organisms. 
Hence care must be taken in extrapolating such data to environmentally relevant 
concentrations. Other considerations include the statistical power of the data used to derive 
the dose-response function (data quantity), and the accuracy and repeatability of the 
experimental set-up and analytical measurements (data quality). 

The species sensitivity distribution (SSD) method is used when toxicity data are available for 
multiple species or multiple dose-response functions for a single species. In SSD, a statistical 
distribution of species sensitivities is created, and the 5th percentile of this distribution (termed 
the HC5) is often used as the PNEC. As with the AF method, additional assessment factors may 
also be applied to the HC5 to account for uncertainties in the derivation of the data 
incorporated into the SSD. 

For soil biota specifically, i.e., PNECsoil, values are derived ether directly from toxicity studies on 
soil-dwelling organisms (although the toxicity study might not be performed in soil but in some 
other media) and appropriate AFs applied to the lowest toxicity value or HC5 if multiple studies 
of multiple organisms are available. Where no direct measurements of toxicity are available for 
soil organisms, the equilibrium partitioning method (EPM) can be used to derive a PNECsoil from 
an aquatic PNECwater. There are far more ecotoxicity tests conducted on aquatic organisms, 
partly due to historical concerns of chemical impact on aquatic ecosystems, and partly 
because such tests are relatively easy compared to terrestrial species. The PNECsoil can be 
estimated from PNECwater using Equation 1.9: 

𝑃𝑁𝐸𝐶𝑠𝑜𝑖𝑙 = (
𝐾𝑆𝑊

𝜌𝑏
) 𝑃𝑁𝐸𝐶𝑤𝑎𝑡𝑒𝑟 × 1000                                 (Equation 1.9) 

Where KSW is the soil-water partition coefficient and b is the bulk density of wet soil. 

It is important to note that for substances with log(KOW) > 5, additional factors may need to be 
considered due to potential direct ingestion of soil particles by organisms. Also, the EPM is 
generally not recommended for substances that may pose a high hazard to soil organisms, i.e., 
log(KOW or KOC) > 5 and LC50 or EC50 < 1 mg l-1 for aquatic species. 

In all cases, data and PNEC values were sought using the concept of principle source 
documents as adopted by the Environment Agency (Defra, 2011). These are set out below in 
order of priority: 

• Authoritative bodies in the UK (DEFRA), Scottish Government, Scottish Environment 
Protection Agency (SEPA), Environment Agency (EA))  

• European Commission Committees  
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• Other national organisations (e.g. United States Environment Protection Agency (USEPA))  
• Reports produced by authoritative organisations, but for different purposes 

Where authoritative bodies, such as ECHA or USEPA had reviewed multiple ecotoxicological 
studies and multiple PNEC values, prior to deriving a consensus PNEC, these values were used 
in preference to single studies. 

 

1.2.4. Risk Characterisation 
For the majority of agents, risk was defined as the modelled probability that after spreading 
sewage sludge on agricultural land, soil biota would experience deleterious effects arising from 
direct contact or other forms of exposure (e.g. ingestion) with chemicals present in the sewage 
sludge. 

Relative risk was calculated as a simple risk ratio (RR) of the exposure (predicted effect 
concentration in soil, PEC, mg kg-1) to the relevant predicted no effect concentration (PNECsoil); 
Equation 1.10. If the PEC exceeds the PNEC, we might expect to observe deleterious effects on 
the soil biota. 

𝑅𝑅 =
𝑃𝐸𝐶𝑠𝑜𝑖𝑙

𝑃𝑁𝐸𝐶𝑠𝑜𝑖𝑙
⁄                                         (Equation 1.10) 

 

1.2.5. Sensitivity analysis 
A simple point sensitivity analysis was conducted to identify which input parameters the risk 
assessment is most sensitive to and therefore are most important to characterise accurately to 
reduce the output uncertainty. A point sensitivity analysis investigates how the model output 
changes relative to the change in each input parameter while keeping all the other inputs at a 
fixed level. The sensitivity can be expressed in different ways. Here, the sensitivity of the model 
output, O, to a parameter i taking the value xi is expressed through a normalised sensitivity 
index, SI, calculated as (Spitz and Moreno, 1996): 

𝑆𝐼𝑖 =
|𝑑𝑂|

(
|𝑑𝑥𝑖|

𝑥𝑖
⁄ )

                                                             (Equation 1.11) 
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2. Microplastics and Fibres 
 

2.1. Background 
Microplastics (MPs) are widely defined as plastic particles smaller than 5 mm (GESAMP, 2015), 
and arise from various sources such as plastic products, cosmetics, lubricants, additives, etc., 
as well as in the form of synthetic fibres shed during the washing of textiles (Li et al., 2018). 
Microplastics can be primary MPs, i.e., manufactured to desired specifications (e.g., 
microbeads in facial scrubs), or secondary MPs, i.e., those derived from the degradation of 
larger plastics. Of these, secondary MPs are by far the most abundant in the environment (Liu et 
al., 2019).  

Microplastics have been ubiquitously detected in all ecosystems (Plastics Europe, 2023). 
Globally, 400 million tonnes of plastics were produced in 2022, while only 38 million tonnes 
(9.6%) were recycled or treated (Plastics Europe, 2023). If these patterns of manufacture and 
recycling continue, we can expect ~12 billion tonnes of plastic waste to end up in landfill and 
natural environments by 2050 (UNEP-WCMC, IUCN and NGS, 2020). Additionally, MPs released 
into the environment, can adsorb certain inorganic and organic pollutants which can be re-
released following degradation by natural agents (water, sunlight, microorganisms, etc.). 

Despite much of the microplastics research focussing on the marine environment, the main 
release pathway for plastics is to the terrestrial environment. It is estimated that globally, plastic 
pollutants are 4 – 23 times more abundant in soils than in oceans (Horton et al., 2017). In some 
land-locked European countries, emissions of plastics to soils have been estimated to be 40 
times higher than to surface waters (Kawecki & Nowack, 2019). In agriculture, MPs find their way 
into soils primarily via sewage sludge application (Corradini et al., 2019; Nizzetto et al., 2016) as 
well as other agricultural amendments (e.g., composts and digestates), plastic waste arising 
from agriculture, and general littering (Braun et al. 2023). 

There have been various studies looking at the presence of MPs in wastewater treatment (Habib 
et al., 2020; Raju et al., 2020; Zhao et al., 2018). It has been reported that ~80 – 90% of MPs 
passing through wastewater treatment plants are retained in the generated biosolids that are 
widely applied as fertilisers, thus representing a substantive potential source of contamination 
of the soil environment (Alvim et al., 2020a, b; Campo et al., 2019; He et al., 2018; Okoffo et al., 
2019; Murphy et al., 2016; Talvitie et al., 2017). The presence of MPs in sewage sludge derived 
from wastewater treatment has only been studied to a limited extent with most studies focusing 
on specific water treatment processes, or more general identification and detection methods 
(Azizi et al., 2021; Rolsky et al., 2020; Zhang & Chen, 2020). 

Microplastics can alter soil properties, microbial activity (de Souza Machado et al., 2017), 
enzyme activity (Zhao et al., 2018), and the composition of microbial communities (Seeley et 
al., 2020), and their leachates can negatively impact soil biota (Kim et al., 2020). Direct 
ingestion of MPs by soil organisms (e.g., earthworms, Lwanga et al., 2017; snails, Panebianco et 
al., 2019; collembola, Maaß et al., 2017) can cause deleterious effects on the digestive system, 
including damage to the oesophagus as well as intestinal obstruction (Ju et al., 2019; Song et 
al., 2019; Zhu et al., 2018). Overall, MPs have been reported to affect reproduction, growth, and 
survival of soil organisms (Cao et al., 2017; Lahive et al., 2019). 
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Despite the potential negative impacts described above, risk assessments of MPs in soil 
systems (as opposed to aquatic systems) have been very limited. Indeed, the 2018 assessment 
(Scottish Government, 2018), reported it was not possible to undertake a formal risk analysis of 
microplastics in soils due to lack of key information on fate and transport of microplastics, but 
also due to lack of dose-response data for humans (the focus of the 2018 assessment). The 
current analysis focusses on ecological risks, which gets around some of these limitations as 
ecotoxicological data are available for MPs for a wide range of species. 

In addition, despite calls for standardisation (e.g., Sa’adu & Farsang, 2023), there are no agreed 
reporting standards for MPs. This means that data on levels of MPs in soils can be reported on 
either a mass-, i.e., mg kg-1, or number-, i.e., n kg-1 basis. There are no standard methodologies 
for determining microplastics either with a variety of methodologies used in isolation or in 
tandem including density separation, spectroscopy, pyrolysis-GC-MS, TED-GC-MS, 
fluorescence microscopy, visual sorting, enzymatic digestion, chemical digestion, FTIR, Raman 
spectroscopy (Ziajahromi & Leusch, 2022). The units of characterisation, i.e., mass vs. number, 
are determined by the analytical approach. Any risk analysis methodology needs to be able to 
handle the considerable uncertainty in any data reporting concentration of MPs in soil. 

Similarly, ecotoxicological data are derived from both experimental and in-situ evidence, uses a 
variety of species, and derives a variety of different toxicological end points. Toxicological 
studies characterise toxic dose using different points of departure from and dose-response 
relationship, including no-observed effect concentrations (NOEC), lowest observed effect 
concentrations (LOEC), and highest observed no effect concentrations (HONEC). All these 
points of departure have different interpretations and implications for the toxicological nature of 
the exposure. Any risk analysis methodology needs to be able to handle considerable 
uncertainty to take advantage of all relevant data. 

Since the publication of the 2018 assessment (Scottish Government, 2018), there have been 
two substantive risk assessments of MPs in soils published that provide a complete 
environmental risk assessment. Jacques & Prosser (2021) derived environmental exposure and 
species sensitivity distributions from either no-observed effect concentrations (NOECs) or 
lowest observed effect concentrations (LOECs), with risk characterised as the overlap between 
these two distributions. Their results indicated that current levels of MPs in soils might affect 7 – 
28% of species 5% of the time (Jaques & Prosser, 2021). Tunali et al. (2023), extend the 
methodology of Jaques & Prosser (2021) by incorporating probabilistic species sensitivity 
distributions to account for the additional variabilities introduced by using different dose-
response end points, i.e., NOEC vs. LOEC or other end points such as highest observed no 
effect concentration, HONEC. This methodology had previously been proven advantageous in a 
risk assessment of MPs in aquatic systems (Adam et al., 2021). Thus, Tunali et al. (2023) were 
able to use a far wider range of data sources than Jaques & Prosser (2021).  

Importantly for the current study, Tunali et al. (2023) derived predicted no effect concentrations 
(PNECs) for MPs toxicity to soil organisms both for mass and number of MPs. The PNECs were 
derived from 63 toxicity values across 16 different terrestrial species and as such are probably 
the most comprehensive PNECs available for MPs impact on soil biota. We adopt these PNECs 
in the current study to assess the additional risk associated with MPs present in sewage sludge 
applied to land. 
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2.2. Risk Assessment 
Due to the limited available information on the potential risk posed by MPs in the agricultural 
environment on human health (i.e., exposure to PMs in food products), here the risk assessment 
focusses entirely on potential risk to soil ecology. 

Data on levels of microplastics in treated sewage sludge were collated from literature. Data 
included were those incorporated into the 2018 assessment (Scottish Government, 2018) plus 
additional data published since 2018 up until June 2024. Studies providing convincing 
measurements of MPs in sewage sludge are still relatively sparse, with 6 studies included here 
representing 61 separate measurements (Table 2.1). 

Table 2.1 - Levels of microplastics and fibres measured in sewage sludge (cf. 2018 assessment 
that characterised high levels as 120 n kg-1 (Scottish Government, 2018)). 

Reference Country Microplastic Range Units 
Mahon et al., 2017 Ireland Fibres 4007 – 13675 n kg-1 

  Films 11 – 366 n kg-1 

  Primary 0 - 89 n kg-1 

  Secondary 511 – 5228 n kg-1 
  Other 0 - 178 n kg-1 

Carr et al., 2016 USA Generic 1000 n kg-1 
Leslie et al., 2017 Netherlands Fibres 9.7 - 26 n kg-1 

Corradinni et al., 2019 Chile Generic 1.78 – 50.2 mg kg-1 

Ziajahromi & Leusch, 
2022 

Various Generic 3.16x103 - 1.58x105  n kg-1 

Karthika et al., 2024 India Generic 800 – 1650 n kg-1 
 

A simple ploughing model was established using the same assumptions as those used to derive 
most quantitative risk estimates in Scottish Government (2018); see Section 1.2.2. 

In addition to the assumptions adopted from Scottish Government (2018), MPs were considered 
in their totality. I.e., number or mass of MPs was not split by MP type. This assumption was 
maintained throughout all processes considered by this assessment, including leaching and 
exposure of biota to microplastics. This is similar to the approach used by Tunali et al. (2023). 

Input hazard variables (where hazard refers to levels of potentially harmful agents in sewage 
sludge applied to land), as the number or mass of microplastic particles per kg applied sewage 
sludge, were defined as the 95th %ile measured values from the available data, i.e., 15,325 n kg-1 
and 39 mg kg-1(Table 2.1). This follows the same logic as Scottish Government (2018) that 
assumed 95th %ile hazard data to be a realistic worst-case whilst avoiding the most uncertain 
data at the extremes of the distribution. 

Leaching rate of microplastics from soils was considered to be 0.2% d-1 based on the 
experimental work by Zhang et al. (2022). While the leaching rate presented by Zhang et al. 
(2022) was calculated on a number basis, it was assumed that the same rate of leaching would 
apply on a per mass basis. It was also assumed that leached MPs were removed from the 
system of interest, and hence no longer posed an exposure to soil biota but it should be noted 
that this mobilisation potentially poses risks to water quality.  

When simulating the impacts of a single application of sewage sludge, it was necessary to 
identify the most appropriate time to take a snapshot and use that point in time to derive a risk 
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estimate from. Exposure to soil biota was assessed at 21 days post-application of sewage 
sludge, as representative of compliance with the safe sludge matrix no-grazing period, after 
which the introduction of livestock is likely to influence soil ecology. This assumption was 
removed when simulating multiple applications of sewage sludge over time, where one 
application was assumed per year with a constant leaching rate unadjusted for influence of 
livestock. 

 
2.2.1. Risk Characterisation 

Relative risk (RR) was defined as the predicted concentration (number or mass-based) of MPs 
added to the soil following application of sewage sludge relative to published safe values. In this 
instance, the predicted no-effect concentrations (PNEC) reported by Tunali et al. (2023) were 
adopted as the comparators. Specifically, the 25th%ile PNEC values derived from data that 
included highest observed no-effect concentrations (HONECs) as the point of departure. These 
were selected in part due to the conservative nature of 25th%ile estimates (realistic worst case), 
and in part because toxicity of fibres was only described using HONECS. Our input data 
reported fibres as the most prevalent form of MP in sewage sludge, thus PNECS derived from 
HONEC data enabled us to evaluate risks associated with the entirety of the input data. In 
summary, the PNECs used were (Table 2.2): 

 

Table 2.2 - Predicted no effect concentrations (PNEC) adopted as safe levels for comparison 
with estimated exposures. 

Unit of measurement PNEC 
number/kg 2100 (Tunali et al., 2023) 
mg/kg 8 (Tunali et al, 2023) 

 

 

Figure 2.1 displays the estimated additional relative risk to soil biota following a single 
application of sewage sludge to land for a range of application rates (25 – 50 t ha-1). Relative risk 
is estimated using both number-based (n kg-1) and mass-based (mg kg-1) MPs data and PNECs. 
Relative risk (RR) is a relative index, as such it is unitless. Where RR > 1.0 (unity) exposure (PEC) 
exceeds the PNEC and it is therefore probable that an appreciable negative impact will be 
manifest. Intuitively, risk estimates increase with increasing sewage sludge application rate. 
Mass-based estimates are lower than number-based ones by ~0.1 (although this difference 
does increase slightly with increasing application rate). Even at a very high rate of application, 
number-based estimates of RR do not exceed 0.4 (i.e., less than unity). A single application of 
sewage sludge therefore does not present an appreciable risk to soil biota at typical application 
rates. 
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Figure 2.1 - Relative risk (RR) to soil biota from microplastics following a single application of 
sewage sludge at a range of application rates (25 – 50 t ha-1). Relative risk was defined as the 
ratio of exposure to MPs relative to PNEC values published by Tunali et al. (2023). Relative risk 
was calculated 21 days after sewage sludge application. Leaching of MPs from the soil system 
was assumed to be 0.2 % d-1 (Zhang et al., 2022). 

 

Figure 2.2 shows the number of applications of sewage sludge necessary for the additional 
relative risk to exceed unity, i.e., RR > 1.0. Where RR exceeds 1.0, exposure is greater than the 
PNEC values, and an appreciable deleterious effect on soil biota is probable. Again, number-
based estimates tend to characterize the relative risk more strongly indicating that between 2 – 
6 applications would be required for RR to exceed 1.0, depending on application rate. Mass-
based estimates are more optimistic, suggesting somewhere between 4 and 10 applications 
would be required before RR exceeded unity. In this simulation, it was assumed that a single 
application of sewage sludge is applied each year with 0.2 % leaching of microplastics from the 
soil system per day (Zhang et al., 2022). Other routes of MP removal, such as uptake by crops 
and transportation via wind erosion, were not included in this assessment as it was assumed 
that bare soil under stable meteorological conditions was the realistic worst-case. This is an 
over-simplification of reality as sewage sludge would not be applied to land that was not being 
used for production, but this assumption maintained the requirement to support precautionary 
decision making whilst avoiding difficult to quantify sources of variation such as crop type, crop 
and land management, irrigation, etc. 
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Figure 2.2 - Number of applications of sewage sludge at different application rates (25 – 50 t ha-

1) required before relative risk (RR) from microplastics exceeds unity, i.e., exposure to 
microplastics exceeds published safe PNEC values. Relative risk was defined as the ratio of 
exposure to MPs relative to PNEC values published by Tunali et al. (2023). One application of 
sewage sludge every 365.25 days was assumed and leaching of MPs from the soil system was 
assumed to be 0.2 % d-1 (Zhang et al., 2022). 

 

2.3. Conclusions 
Based on the simulations presented, a single application of sewage sludge poses minimal risk 
to soil biota from microplastics. Having said this, the simulations also indicate that it does not 
take many repeat applications (2 to 10) for risks to soil biota associated with MPs to become 
appreciable. This is in part because accumulation of MPs exceeds their removal from the 
system due to leaching. While specific application frequencies are crop- and soil-dependent, 
typically farmers in Scotland (and the rest of the UK) would apply sewage sludge annually or 
less frequently to cereal crops (depending on soil tests and crop rotation), and on a longer cycle 
(~every 2 – 3 years) to grassland and other crops with restrictions. Thus, accumulation of MPs 
over 5 – 10 years’ timeframe becomes the consideration for environmental protection and is 
analogous to accumulation of potentially toxic metals which many sewage sludge regulations 
and best practice are built around. These results highlight that sewage sludge provides a 
significant route for MPs to reach soils and the wider environment. Removal of MPs from 
wastewater during treatment is imperative to prevent accumulation of MPs in our soil resource 
but source control and restricting use of plastics in products is an important part of the 
solution. In addition, it should be noted that MPs leaving the soil system via leaching will be 
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entering the aquatic environment where their negative impacts on water quality and sensitive 
aquatic organisms are well characterised (Ali et al., 2024).  
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3. Organic and other emerging chemicals 
 

3.1. Background 
Organic contaminants are carbon-based chemical substances that persist in the environment, 
bioaccumulate through the food web, and pose a risk of causing adverse effects to biota. Thus, 
when present in soils, organic contaminants present a threat to soil function and quality. A sub-
set of organic contaminants are known as emerging chemicals, for the purposes of this report 
emerging chemicals are those that are currently not regulated and does not necessarily indicate 
that the chemical is recently discovered. Within this study, organic and emerging chemicals 
include industrial chemicals (such as polychlorinated biphenyls – PCBs), unintentional by-
products of industrial processes (such as dioxins and furans), products of incomplete 
combustion (e.g., polycyclic aromatic hydrocarbons – PAHs), flame retardants (such as 
polybrominated diphenyl ethers – PBDEs), plasticisers (such as benzyl butyl phthalate – BBP), 
and chemicals used widely in consumer products (e.g., perfluoroalkyl and polyfluoroalkyl 
substances – PFAS).  

Given the diversity of chemicals, organic contaminants can enter wastewater treatment plants 
(WWTPs) from a wide variety of sources. These include urban and agricultural run-off, domestic 
wastewater, industrial point source discharges, and via atmospheric deposition. Organic 
contaminants are typically lipophilic (fat soluble) and hydrophobic, thus sorption to sewage 
sludge solids is the primary pathway for their removal from wastewater. Thus, the application of 
sewage sludge to land, whether on to the soil surface or via incorporation into the topsoil, will 
directly expose the soil and soil biota to organic contaminants. Some non-persistent organic 
pollutants, such as lower molecular mass PAHs, can be degraded during composting and 
through natural attenuation in the soil (Brandli et al., 2007). In contrast, persistent organic 
pollutants (POPs), such as PCBs or polychlorinated dibenzodioxins and furans (PCDD/Fs) can 
accumulate in soil when contaminated sewage sludge is applied repeatedly (Umlauf et al., 
2011).  

More recently there has been considerable focus on the persistent synthetic organofluorine 
chemicals PFAS. The PFAS are used in many applications (surfactants, protective treatments, 
polymer manufacturing) and due to their widespread presence in consumer products, WWTPs 
have become a sink for PFAS. They resist degradation by conventional wastewater treatment 
processes and are usually adsorbed to sewage sludge and biosolids, with most reports 
revealing significantly elevated levels of PFAS in sewage sludges globally (Saliu & Sauvé, 2024). 

Growing evidence suggests that organic contaminants have significant negative impacts on the 
sustainable development of the ecological environment (Vodyanitskii & Yakovlev, 2016). Taking 
earthworms as an example of highly visible macro-invertebrates that play vital roles in soil 
function and quality. Many organic contaminants are ingested by earthworms (Zhao et al., 2022) 
and accumulate in the digestive tract (Sidhu et al., 2019; Navarro et al., 2016) causing 
detectable damage (Gu et al., 2017; Šmídová et al., 2015). Earthworms form part of a wider food 
web being important prey for birds and fish thus the accumulation of organic contaminants in 
earthworms presents a wider threat beyond the soil environment (Kesic et al., 2021). 

Like the 2018 assessment (Scottish Government, 2018) of sewage sludge risks to human health 
and the environment, the focus of the 2024 assessment is on emerging and priority 
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contaminants. The majority of traditional organic chemicals having reduced significantly in 
wastewater due to tighter source controls and governance through regulatory instruments and 
multilateral treaties such as the Stockholm Convention on Persistent Organic Pollutants (POPs) 
(Stockholm Convention - Home page (pops.int)). In the 2018 assessment (Scottish Government, 
2018) reference was made to the EU Future Brief and other position statements on emerging 
organic contaminants as published in 2017 (Science for Environment Policy, 2017). At that time 
there was significant focus on perfluorochemicals (PFCs, including PFAS) and polybrominated 
diphenyl ethers (PBDEs). The concerns raised then were around the smaller evidence base for 
these chemicals and hence subsequent behaviour in the environment (Science for Environment 
Policy, 2017). Since then, new policy papers have been published that highlight the need for a 
watching brief and increased restrictions on emerging contaminants. On 7th February 2023, the 
European Chemicals Agency ECHA published a comprehensive dossier concerning a ban on 
~10,000 PFAS, with an aim to restrict manufacture, placing on the market, and use of potentially 
harmful PFAS (ECHA, 2023). The ban is to be implemented under regulation (EU) No. 1907/2006 
REACH, timetabled for 2027. In the UK, the British Chamber of Commerce EU & Belgium 
Chemicals Working Group has pushed back on an outright ban of PFAS stating the negative 
impact this would have on several industrial sectors and supply chains (BRITCHAM EU, 2024). 
Sewage sludge legislation and best practice are trying to keep up with these developments and 
pre-empt the final UK position on PFAS. For example, in England, the Environment Agency is in 
the process of moving away from the outdated Sludge (Use in Agriculture) Regulations as they 
no longer provide a fit for purpose regulatory framework for handling emerging contaminants 
including PFAS (Environment Agency, 2023). It is in this context, that the current assessment 
has been made. 

The 2018 assessment (Scottish Government, 2018) identified several reviews that prioritised 
emerging contaminants for research (Clarke et al., 2016; Stewart et al., 2016; Thomaidi et al., 
2016; McCarthy et al., 2015; Jensen et al., 2012; Clarke & Smith, 2011; Table 3.1). It was 
considered that while some of the contaminants listed might have changed position within 
these lists in terms of their relative priority, the basic lists still provided a sound basis for 
inclusion within the assessment. In addition, priority contaminants, based on known current 
chemicals of interest and those being considered for restrictions, were also added into the 
assessment. It should be noted that where a chemical is sensu stricto an organic chemical but 
is used primarily as a pharmaceutical or in personal care products, this chemical has not been 
in the risk assessment presented here but in the assessment for pharmaceuticals and personal 
care products (Section 4). 
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Table 3.1 – Identification of priority chemicals in the literature.  

Clarke & Smith 
20111 

Jensen et al., 
20122 

Thomaidi et al., 20163 Stewart et al., 
20164 

Clarke et al., 
20165 

10/11: PFCs 
9/11: PCAs;  
PCNs 
7/11: PBDEs;  
OTs; TCS; TCC 
6/11:  
Benzothiazoles 
5/11: Antibiotics,  
pharmaceuticals 
3/11: Synthetic  
musks 
2/11: BPA;  
QACs; Steroids 
1/11: PAEs;  
PDMSs 

Low riskb 

• BFRs 
•Musks 
•Pharmaceuticals 
•PCBs 
•PFCsc 

For future reviewd 
• PCAs 
• PCNs 
• TCC 
• TCS 
• Parabens 

Synthetic phenolic 
compounds 
• NP 
• NP1EO 
• NP2EO 
• TCS 
Siloxanes 
• Decamethylcyclopenta- 
• 
Dodecamethylcyclohexa- 
• Dodecamethylpenta- 
• Tetradecamethylhexa- 
Benzothiazoles 
• 2-hydroxybenzothiazole 
Pharmaceuticals 
• Caffeine 
• Benzothiazoles 

Flame  
retardants 
• BDE 77, 99  
and 209 
• TDCP,  
• TPP  
• TCPP 
Plasticisers 
• DEHP 
• BBP 
• Bisphenol A 
Perfluorinated  
compounds 
• PFOS/PFOA 

•NP, NP1EO,  
NP2EO (1-3) 
•TCC (4) 
•TCS (5) 
•BPA (6) 
•Carbamaze
pine (7) 
•PBDE (8) 
•PCBs (9) 
•PFOA (10) 
•PFOS (11) 
•PCDD/Fs 
(14) 

1 Ranking of research priorities for emerging organic contaminants in biosolids (10 highest priority to 1 least priority) 
perfluorochemicals (PFCs); polychlorinated alkanes (PCAs); polychlorinated naphthalenes (PCNs); polybrominated 
diphenyl ethers (PBDEs); organotins (OTs); triclosan (TCS); triclocarban (TCC); bisphenol A (BPA); quaternary 
ammonium compounds (QACs); phthalate acid esters (PAEs) and polydimethylsiloxanes (PDMSs) 2Prioritisation and 
selection of chemicals to assess the risk to soil organisms from the application of sludge (brominated flame 
retardants (BFR), musks, pharmaceuticals, PCBs and PFCs). Identification of chemicals for future evaluation.  
3Greece was used as case study and the environmental risk associated with the existence of 99 emerging OCCs in 
sludge-amended soil was estimated using risk quotient (RQ) approach. Chemical with a risk quotient >1 are listed.  
4Identification of indicator compounds for use in the assessment of organic chemical removal during wastewater 
treatment and their fate in receiving environments (Tris[2-chloro-1-(chloromethyl)ethyl]phosphate (TDCP); Triphenyl 
phosphate (TPP); Tris (1-chloro-2-propyl) phosphate (TCPP); Di (2-ethyhexyl)phthalate (DEHP); benzyl butyl phthalate 
(BBP); = perfluorooctanesulfonic acid (PFOS); perfluorooctanoic acid (PFOA)). 5A quantitative risk ranking model was 
developed for human exposure to emerging contaminants following biosolids application to Irish agricultural land. 
Chemicals are ranked by predicted environmental concentration in soil. 

 

 

3.2. Risk Assessment 

Chemicals listed in Table 3.1 were included in the risk assessment if; (i) their primary 
application was not for pharmaceutical or personal care products, (ii) if reliable distribution 
coefficients were available that satisfied the requirements of the multi-media fugacity models 
(Section 1.2.2). The full list of organic chemicals, their physico-chemical properties and 
predicted no effect concentration (PNEC) values are listed in Table 3.2. 
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Table 3.2 Physico-chemical data and predicted no effect concentrations (PNEC) for organic 
chemicals included in the risk assessment. Chemicals highlighted in bold are additional to the 
previous 2018 assessment (Scottish Government, 2018). 

Chemical Water 
solubility  
(mg l-1 
@25ºC) 

Vapour 
pressure 
(mm Hg 
@25ºC) 

Henry’s 
constant  
(atm-m3 mol-1) 

Log Kow PNECsoil (mg 
kg-1) 

Benzo(a)anthracene 9.40x10-3 
(May et al., 
1983) 

2.10x10-7 
(Sonnefeld 
et al., 1983) 

1.20x10-5 
(NCCT, 2024) 

5.76  
(Wang et al., 
1986) 

7.90x10-2 
(Verbruggen, 
2012) 

Benzo(a)pyrene 1.62x10-3 
(May et al., 
1983) 

5.49x10-9 
(Murray et 
al., 1974) 

4.57x10-7 
(NCCT, 2024) 

6.13 (de 
Maagd et al., 
1998) 

5.30x10-2 
(Verbruggen, 
2012) 

Benzo(b)fluoranthene 1.50x10-3(a) 

(Yalkowski et 
al., 2010) 

5.00x10-7(b) 
(Coover & 
Sims 1987) 

6.57x10-7 
(NCCT, 2024) 

5.78 (Wang 
et al., 1986) 

2.80x10-1 
(Verbruggen, 
2012) 

Benzo(k)fluoranthene 7.60x10-4 
(USEPA, 
1987) 

9.65x10-10 
(Murray et 
al., 1974) 

5.84x10-7 
(NCCT, 2024) 

6.11  
(de Maagd et 
al., 1998) 

2.70x10-1 
(Verbruggen, 
2012) 

Chrysene 2.00x10-3 
(Miller at al., 
1985) 

6.23x10-9 
(Hoyer & 
Peperle 
1958) 

9.40x10-7 
(NCCT, 2024) 

5.73 (Hansch 
et al., 1995) 

5.50x10-1 
(Verbruggen, 
2012) 

Indeno(1,2,3-
cd)pyrene 

6.20x10-2(b) 
(Sims & 
Overcash 
1983) 

1.25x10-10 
(USEPA, 
2012) 

3.48x10-7 
(NCCT, 2024) 

6.70 (USEPA, 
2012) 

1.30x10-1 
(Verbruggen, 
2012) 

Naphthalene 3.10x101 
(Pearlman et 
al., 1984) 

8.50x10-2 
(Ambrose et 
al., 1975) 

4.40x10-4 
(NCCT, 2024) 

3.30 (Hansch 
et al., 1995) 

1.00x100 
(Verbruggen, 
2012) 

PCB 28 1.17x10-1 
(USEPA 
OPERA, 
2024) 

3.46x10-4 
(USEPA 
OPERA, 
2024) 

2.05x10-4 
(USEPA 
OPERA, 2024) 

5.64 (USEPA 
OPERA, 
2024) 

7.00x10-5 
(Beduk et al., 
2023) 
 

PCB 52 3.00x10-2 
(USEPA 
OPERA, 
2024) 

9.90x10-5 
(USEPA 
OPERA, 
2024) 

3.50x10-5 
(USEPA 
OPERA, 2024)  

6.10 (USEPA 
OPERA 2024) 

1.50x10-5 
(Beduk et al., 
2023) 

PCB 95 1.00x10-2 
(USEPA 
OPERA, 
2024) 

1.45x10-5 
(USEPA 
OPERA, 
2024) 

9.34x10-5 
(USEPA 
OPERA, 2024) 

6.56 (USEPA 
OPERA, 
2024) 

1.50x10-5(*) 

(Beduk et al., 
2023) 

PCB 101 1.00x10-2 

(USEPA 
OPERA, 
2024) 

1.62x10-5 
(USEPA 
OPERA, 
2024) 

8.39x10-5 
(USEPA 
OPERA, 2024) 

6.43 (USEPA 
OPERA, 
2024) 

5.00x10-6 
(Beduk et al., 
2023) 

PCB 118 1.00x10-3 

(USEPA 
OPERA, 
2024) 

1.36x10-5 
(USEPA 
OPERA, 
2024) 

7.86x10-5 
(USEPA 
OPERA, 2024) 

6.77 (USEPA 
OPERA, 
2024) 

1.57x10-4 
(Beduk et al., 
2023) 
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PCB 132 1.00x10-3 
(USEPA 
OPERA, 
2024) 

3.19x10-6 
(USEPA 
OPERA, 
2024) 

3.91x10-5 
(USEPA 
OPERA, 2024) 

7.24 (USEPA 
OPERA, 
2024) 

1.10x10-5(*) 

(Beduk et al., 
2023) 

PCB 138 1.00x10-3 
(USEPA 
OPERA, 
2024) 

4.39x10-6 
(USEPA 
OPERA, 
2024) 

2.46x10-5 
(USEPA 
OPERA, 2024) 

7.33 (USEPA 
OPERA, 
2024) 

1.10x10-5 
(Beduk et al., 
2023) 

PCB 149 1.00x10-3 
(USEPA 
OPERA, 
2024) 

5.53x10-6 
(USEPA 
OPERA, 
2024) 

3.34x10-5 
(USEPA 
OPERA, 2024) 

7.16 (USEPA 
OPERA, 
2024) 

1.10x10-5(*) 
(Beduk et al., 
2023) 

PCB 153 1.00x10-3 
(USEPA 
OPERA, 
2024) 

4.01x10-6 
(USEPA 
OPERA, 
2024) 

3.08x10-5 
(USEPA 
OPERA, 2024) 

6.97 (USEPA 
OPERA, 
2024) 

6.00x10-6 
(Beduk et al., 
2023) 

PCB 174 1.00x10-3 
(USEPA 
OPERA, 
2024) 

1.05x10-6 
(USEPA 
OPERA, 
2024) 

9.45x10-6 
(USEPA 
OPERA, 2024) 

7.71 (USEPA 
OPERA, 
2024) 

1.00x10-5 
(Beduk et al., 
2023) 

PCB 180 1.00x10-3 
(USEPA 
OPERA, 
2024) 

1.02x10-6 
(USEPA 
OPERA, 
2024) 

7.63x10-6 
(USEPA 
OPERA, 2024) 

7.56 (USEPA 
OPERA, 
2024) 

1.00x10-5 
(Beduk et al., 
2023) 

2,3,7,8-TeCDD 2.00x10-4 
(Shiu et al., 
1988) 

1.50x10-9 
(Rordorf, 
1987) 

8.95x10-6 
(USEPA 
OPERA, 2024) 

6.80 (Shiu et 
al., 1988) 

2.2x10-7 
(Huygens et 
al., 2022) 

1,2,3,7,8-PeCDD 1.93x10-5 
(USEPA 
OPERA, 
2024) 

6.03x10-10 
(USEPA 
OPERA, 
2024) 

1.09x10-5 
(USEPA 
OPERA, 2024) 

6.58 (USEPA 
OPERA, 
2024) 

2.2x10-7(*) 
(Huygens et 
al. 2022) 

1,2,3,4,6,7,8-HpCDD 1.90x10-3 
(Miyata et al., 
1989) 

7.40x10-8 
(Nestrick et 
al., 1980) 

2.18x10-5 (Hine 
& Mookerjee 
1975) 

8.11 (USEPA 
OPERA, 
2024) 

2.20x10-5(*) 

(Huygens et 
al., 2022) 

2,3,4,7,8-PeCDF 4.19x10-4 
(USEPA 
OPERA, 
2024) 

2.01x10-9 
(USEPA 
OPERA, 
2024) 

3.97x10-5 
(USEPA 
OPERA, 2024) 

6.62 (USEPA 
OPERA, 
2024) 

4.40x10-7(*) 
(Huygens et 
al., 2022) 

1,2,3,4,7,8-HxCDF 2.40x10-6 
(USEPA 
OPERA, 
2024) 

2.13x10-9 
(USEPA 
OPERA, 
2024) 

9.31x10-6 
(USEPA 
OPERA, 2024) 

7.45 (USEPA 
OPERA, 
2024) 

2.20x10-6(*) 
(Huygens et 
al., 2022) 

1,2,3,6,7,8-HxCDF 8.53x10-4 
(USEPA 
OPERA, 
2024) 

2.12x10-9 
(USEPA 
OPERA, 
2024) 

9.31x10-6 
(USEPA 
OPERA, 2024) 

7.45 (USEPA 
OPERA, 
2024) 

2.20x10-6(*) 
(Huygens et 
al., 2022) 

2,3,4,6,7,8-HxCDF 8.55x10-4 
(USEPA 
OPERA, 
2024) 

2.12x10-9 
(USEPA 
OPERA, 
2024) 

9.31x10-6 
(USEPA 
OPERA, 2024) 

7.45 (USEPA 
OPERA, 
2024) 

2.20x10-6(*) 
(Huygens et 
al., 2022) 
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Nonylphenol 7.00x100 
(Yalkowsky & 
Dannenfelser 
1992) 

8.18x10-4 
(Bidleman & 
Renberg 
1985) 

3.50x10-5 
(NCCT, 2024) 

5.76 (Itokawa 
et al., 1989) 

3.40x10-1 
(Janssen et 
al., 2004) 

Nonylphenol 
diethoxylate 

1.05x100 
(ECHA, 2013) 

9.14x10-9 
(ECHA, 
2013) 

2.56x10-9 
(ECHA, 2013) 

5.30 (ECHA, 
2013) 

1.10x10-1 
(Lamastra et 
al., 2018) 

PBDE 99 1.33x10-2  
(EU, 2001) 

3.50x10-7 
(Hardy & 
Smith 1999) 

2.50x10-5 

(NCCT, 2024) 
6.84 (Geyer 
et al. 2004) 

8.47x10-1 
(Huygens et 
al., 2022) 

PBDE 209 1.00x10-4 
(ECHA, 2015) 

6.96x10-11 
(Lorber & 
Cleverly 
2010) 

1.20x10-8 
(NCCT, 2024) 

9.97 
(Environment 
Canada 
2010) 

9.80x101 
(Huygens et 
al., 2022) 

TBBPA 1.71x10-1 
(Kuramochi 
et al., 2008) 

4.68x10-8 
(PubChem, 
2023) 

2.00x10-8 
(PubChem, 
2023) 

4.75 
(Kuramochi 
et al.. 2008) 

3.10x10-2 
(Öko-Institut 
e, 2019) 

HBCD 3.40x10-3 
(Stenzel & 
Markley 
1997) 

4.70x10-7 
(Stenzel & 
Nixon 1997) 

1.17x10-4 
(Australian 
Government, 
2012) 

5.60 
(MacGregor 
& Nixon 
1997) 

4.30x10-1 
(Australian 
Government, 
2012) 

PFOA 3.30x103 
(Inoue et al., 
2012) 

3.16x10-2 
(Bhhararai 
& 
Gramatica 
2011) 

2.02x10-10 
(USEPA 
OPERA, 2024) 

4.15  
(USEPA, 
2012) 

1.13x10-2 
(Huygens et 
al., 2022) 

PFOS 3.20x10-3 
(USEPA, 
2012) 

2.00x10-3 
(USEPA, 
2012) 

1.85x10-11 
(USEPA 
OPERA, 2024) 

4.49  
(USEPA, 
2012) 

2.61x10-3 
(Huygens et 
al., 2022) 

PFNA 6.25x10-2 
(ECHA, 2014) 

8.30x10-2 
(ECHA, 
2014) 

No Data 5.48  
(ECHA, 2014) 

1.13x10-2 
(Huygens et 
al., 2022) 

PFHxS 2.30x103 
(ECHA, 2017) 

4.60x10-3 
(PubChem, 
2023) 

5.03x10-6 
(Plassmann et 
al., 2011) 

Inappropriate 
(Stockholm 
Convention, 
2018) 

1.13x10-2 
(Huygens et 
al., 2022) 

TFA 1.50x106 
(ECHA, 2023) 

9.30x101 
(ECHA, 
2023) 

8.88x10-8 
(ECHA, 2023) 

0.79  
(ECHA, 2023) 

4.70x10-3 
(ECHA 2023) 

TCDP 7.00x100 
(Yalkowsky et 
al., 2010) 

2.86x10-7 
(USEPA, 
2012) 

2.60x10-9 
(NCCT, 2024) 

3.65  
(Chem Insp 
Test Inst., 
1992) 

3.20x10-1 
(ARCADIS, 
2011) 

TCPP 1.08x103  
(EU, 2008a) 

1.05x10-5 
(EU, 2008a) 

3.91x10-9 (EU, 
2008a) 

2.68  
(EU, 2008a) 

1.70x100 (EU, 
2008a) 

TCEP 7.94x103 
(ECHA, 2023) 

8.55x10-6 
(EU, 2008b) 

4.10x10-5 (EU, 
2008b) 

1.78  
(EU, 2008b) 

3.41x10-1 (EU, 
2008b) 

TDCPP 7.00x100 
(PubChem, 
2023) 

1.10x100 
(ChemScr, 
2023) 

2.60x10-9 
(PubChem, 
2023) 

1.79 
(ChemScr, 
2023) 

2.90x10-1 
(EU, 2008c) 
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DEHP 2.70x10-1 
(DeFoe et al., 
1990) 

1.42x10-7 
(Hinckley et 
al., 1990) 

2.70x10-7 
(NCCT, 2024) 

7.60 (de 
Bruijin et al., 
1989) 

1.30x101 
(Huygens et 
al., 2022) 

BBP 2.69x100 
(Howard et 
al., 1985) 

8.25x10-6 
(Howard et 
al., 1985) 

1.30x10-6 
(NCCT, 2024) 

4.73 
(Ellington & 
Floyd 1996) 

1.39x100 (EU 
2008d) 

Glyphosate 1.2x104 
(ATSDR, 
2020) 

9.80x10-8 
(ATSDR, 
2020) 

2.10x10-12 
(ATSDR, 2020) 

-3.40 
(ATSDR, 
2020) 

1.25x100 
(Xiao et al., 
2023) 

 

(*) based on TEFs 

 

Initial concentrations in sewage sludge were set based on the ‘realistic worst-case’ paradigm 
(Longhurst et al., 2019; Scottish Government 2018; Hough et al. 2012). The data used in the 
2018 assessment (Scottish Government 2018) were used as an initial starting point, and these 
data were added to with recent data published since 2018. Concentrations used in the current 
assessment were derived from 90%ile values from the combined data sets (Table 3.3). 
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Table 3.3 – Initial concentrations of organic contaminants in sewage sludge prior to spreading. 
Chemicals highlighted in bold are additional to the previous 2018 assessment (Scottish 
Government 2018). 

Chemical 
(IUPAC) 

Concentration in 
sewage sludge 
(90%ile, mg kg-1) 

References 

Benzo(a)anthracene 
(benzo[a]anthracene) 3.50x10-1 

 
 
 

Kominko et al., 2024 
Beduk et al., 2023 
Wluka et al., 2021 
Chen et al., 2019 

Stanczyk-Mazanek et 
al., 2019 

Sun et al., 2019 
WRAP 2016 

 

Benzo(a)pyrene 
(benzo[a]pyrene) 3.80x10-1 

Benzo(b)fluoranthene 
(benzo[b]fluoranthene) 4.70x10-1 

Benzo(k)fluoranthene 
(benzo[k]fluoranthene) 2.60x10-1 

Chrysene 
(chrysene) 5.70x10-1 

Indeno(1,2,3-cd)pyrene 
(indeno[1,2,3-cd]pyrene) 4.90x10-1 

Naphthalene 
(naphthalene) 3.90x10-1 

PCB 28 
(2,4,4’-trichlorobiphenyl) 1.00x10-1 

Kominko et al., 2024 
Beduk et al., 2023 
Kosnar et al., 2023 

WRAP 2016 

PCB 52 
(2,2’,5,5’-tetrachlorobiphenyl) 3.00x10-2 

PCB 95 
(2,2’,3,5’,6-pentachlorobiphenyl) 3.00x10-2 

PCB 101 
(2,2’,4,5,5’-pentachlorobiphenyl) 4.00x10-2 

PCB 118 
(2,3’,4,4’,5-pentachlorobiphenyl) 3.20x10-1 

PCB 132 
(2,2’,3,3’,4,6’-hexachlorobiphenyl) 7.00x10-2 

PCB 138 
(2,2’,3,4,4’,5’-hexachlorobiphenyl) 8.00x10-2 

PCB 149 
(2,2’,3,4’,5’,6-hexachlorobiphenyl) 8.00x10-2 

PCB 153 
(2,2’,4,4’,5,5’-hexachlorobiphenyl) 8.00x10-2 

PCB 174 
(2,2’,3,3’,4,5,6’-heptachlorobiphenyl) 2.00x10-2 

PCB 180 
(2,2’,3,4,4’,5,5’-heptachlorobiphenyl) 4.00x10-2 

2,3,7,8-TeCDD 
(2,3,7,8-tetrachlorodibenzo-p-dioxin) 1.20x10-6 

Kominko et al., 2024 
WRAP 2016 

1,2,3,7,8-PeCDD 
(1,2,3,7,8-pentachlorodibenzo-p-dioxin) 8.80x10-6 

1,2,3,4,6,7,8-HpCDD 
(1,2,3,4,6,7,8-heptachlorodibenzo-p-
dioxin) 

1.20x10-4 

2,3,4,7,8-PeCDF 1.1x10-5 



42 
 

(4,5,6,11,12-pentachloro-8-
oxatricyclo[7.4.0.02,7]trideca-
1(13),2,4,6,9,11-hexaene) 
1,2,3,4,7,8-HxCDF 
(3,4,5,6,11,12-hexachloro-8-
oxatricyclo[7,4,0,02,7]trideca-
1(13),2,4,6,9,11-hexaene) 

1.50x10-5 

1,2,3,6,7,8-HxCDF 
(3,4,5,10,11,12-hexachloro-8-
oxatricyclo[7.4.0.02,7]trideca-
1(13),2,4,6,9,11-hexaene) 

1.60x10-5 

2,3,4,6,7,8-HxCDF 
(4,5,6,10,11,12-hexachloro-8-
oxatricyclo[7.4.0.02,7]trideca-
1(13),2,4,6,9,11-hexaene) 

1.40x10-5 

Nonylphenol 
(4-nonylphenol) 2.38x102 

Madrid et al., 2020 
Rivier et al., 2019 

Ghanem et al., 2007 
Gibson et al., 2005 

NP2EO 
(2-[2-(4-nonylpohenoxy)ethoxy]ethanol) 1.35x102 Rivier et al., 2019 

González et al., 2010 

PBDE 99 
(2,2’,4,4’,5-pentabromodiphenyl ether) 2.45x100 

Leslie et al., 2021 
Wang et al., 2020 

Demitepe & Imamoglu 
2019 

Harrison et al., 2006 

PBDE 209 
(decabromodiphenyl ether) 

2.45x100 

Leslie et al., 2021 
Wang et al., 2020 

Demitepe & Imamoglu 
2019 

Harrison et al., 2006 

TBBPA 
(2,6-dibromo-4-[2-(3,5-dibromo-4-
hydroxyphenyl)propan-2-yl]phenol) 

2.40x10-1 

Öko-Onstitute, 2019 
Environment Canada, 

2016 
USEPA, 2014 

Morris et al., 2004 
HBCD 
(1,2,5,6,9,10-hexabromocyclododecane) 9.10x100 Morris et al., 2004 

PFOA 
(pentadecafluorooctanoic acid) 1.46x10-2 

Holly et al., 2024 
Saliu & Sauve 2024 

Zhou et al., 2024 
Johnson 2022 

Zareitalabad et al., 
2013 

PFOS 
(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-
heptadecafluorooctane-1-sulfonic acid) 

4.29x10-3 

Holly et al., 2024 
Saliu & Sauve 2024 

Zhou et al., 2024 
Johnson, 2022 

Zareitalabad et al., 
2013 

PFNA 3.34x10-1 Holly et a.,l 2024 
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(pentadecafluorononanionic acid) Saliu & Sauve 2024 
Zhou et al., 2024 

Danish EPA, 2023 
Johnson, 2022 

PFHxS 
(1,1,2,2,3,3,4,4,5,5,6,6-
tridecafluorohexane-1-sulfonic acid) 

1.33x100 

Holly et al., 2024 
Saliu & Sauve 2024 

Zhou et al., 2024 
Danish EPA, 2023 

Johnson, 2022 
TFA 
(2,2,2-trifluoroethanoic acid) ND  

TDCP 
(tris(1,3-dichloropropan-2-yl) phosphate) 2.60x10-1 Österås et al., 2015 

Marklund et al., 2005 
TCPP 
(tris(2-chloro-1-methlyethyl) phosphate) 6.44x100 Rede et al., 2024 

Bester, 2005 
TCEP 
(tris(2-chloroethyl) phosphate) 6.44x100 Assumed same as TCPP 

from Bester, 2005 
TDCPP 
(tris(1,3-dichloropropan-2-yl) phosphate) 6.44x100 Assumed same as TCPP 

from Bester, 2005 

DEHP 
(bis(2-ethylhexyl) benzene-1,2-
dicarboxylate) 

2.70x100 

Österås et al., 2024 
Lamastra et al., 2018 

EU 2008e 
Bright & Healy 2003 

BBP 
(benzyl butyl benzene-1,2-dicarboxylate) 3.80x10-1 Bright & Healy 2003 

Glyphosate 
(N-(phosphonomethyl)glycine) 5.71x10-1 

Rede et al., 2023 
Wydro et al., 2021 

Ghanem et al., 2007 
 

Combining partition coefficients (Table 3.2) with initial concentrations in sewage sludge (Table 
3.3) within equations 1.1 – 1.7 (section 1.2.2), it was possible to estimate the concentrations of 
each organic contaminant that would remain in the sewage-amended soil compared to 
migration to soil pore water or soil pore air (Figure 3.1). Those contaminants with the greatest 
propensity to partition to the soil pore water are subsequently more likely to be taken up by 
plants (such as food crops) or leached to surface or ground waters, thus those contaminants 
with relatively high partitioning to water are more likely to pose risks in the aquatic environment 
and food chain. It should be noted that a full set of partition coefficients were not available for 
PFNA, PFHxS and the degradation product TFA so these contaminants were excluded from the 
partitioning analysis. In the case of PFHxS, the derivation of octanol:water partitioning is 
considered inappropriate (Stockholm Convention 2018) so cannot be included in a partitioning 
model of this type. However, it was possible to estimate concentrations of PFNA and PFHxS in 
sewage-amended soil. Thus, risk estimates are presented for PFNA and PFHxS in Section 3.2.1.  
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Figure 3.1 – Partitioning (ppm, %) of organic contaminants between soil amended with sewage 
sludge, soil pore water, and soil sir spaces given initial starting concentrations in sewage sludge 
(Table 3.3). This is based on a scenario that supports precautionary decision making using a 
single application of sewage sludge at 50 t ha-1. 

 
 

3.2.1. Risk Characterisation 
The current assessment focuses on ecological impacts of the contaminants of interest on soil 
biota. To this end, the predicted concentrations of each chemical in the sewage-amended soil 
fraction were assumed to be equivalent to predicted effect concentrations (PEC) to which soil 
biota are exposed. Risk ratios or relative risk (RR), terms used inter-changeably in this report, 
were then derived as the comparison of the PEC to published predicted no-effect levels (PNEC) 
for soil (Table 3.2, see Equation 1.10 from methods). The un-logged values of RR are also listed 
in Table 3.4. 
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Figure 3.2 – Estimates of relative risk or risk ratio, presented using a logarithmic scale log(RR), 
for each organic contaminant based on the ratio of predicted effect concentration (PEC; see 
Figure 3.1) to the predicted no-effect concentration (PNEC; see Table x.2). These estimates are 
based on a single application of sewage sludge at 50 t ha-1. A log(RR) > 0 indicates that further 
investigation may be required. 
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Table 3.4 – Estimates of relative risk (or risk ratio) (RR) for each organic contaminant based on 
the ratio of predicted effect concentration (PEC; see Figure 3.1) to the predicted no-effect 
concentration (PNEC; see Table x.2). These estimates are based on a single application of 
sewage sludge at 50 t ha-1.  An RR > 1 (shaded in blue) indicates that further investigation may be 
required. 

Contaminant Risk Ratio, RR 
PCB 118 5.64 x101 

NP2EO 1.52 x101 
Nonylphenol  8.65 x100 
PCB 180 4.94 x100 
PCB 52 2.65 x100 
PCB 95 2.65 x100 
PCB 174 2.47 x100 
PFOS 1.64 x100 
PFHxS 1.46 x100 
PFOA 1.29 x100 
TDCPP 8.51 x10-1 
TCEP 7.24 x10-1 
PCB 28 6.57 x10-1 
1,2,3,7,8-PeCDD 4.94 x10-1 
PFNA 3.65 x10-1 
2,3,4,7,8-PeCDF 3.09 x10-1 
HBCD 2.61 x10-1 
PCB 138 2.30 x10-1 
PCB 149 2.30 x10-1 
PCB 132 2.01 x10-1 
PCB 101 1.98 x10-1 
PCB 153 1.25 x10-1 
TBBPA 9.52 x10-2 
1,2,3,6,7,8-HxCDF 8.98 x10-2 
B(a)p 8.85 x10-2 
1,2,3,4,7,8-HxCDF 8.42 x10-2 
2,3,4,6,7,8-HxCDF 7.86 x10-2 
2,3,7,8-TeCDD 6.73 x10-2 
1,2,3,4,6,7,8-HpCDD 6.73 x10-2 
B[a]A 5.47 x10-2 
TCPP 4.68 x10-2 
Indeno(1,2,3-cd)pyrene 4.65 x10-2 
PBDE99 3.57 x10-2 
B(b)f 2.07 x10-2 
Chrysene 1.28 x10-2 
B(k)f 1.19 x10-2 
TCDP 1.00 x10-2 
Glyphosate 5.64 x10-3 
Naphthalene 4.81 x10-3 
BBP 3.38 x10-3 
DEHP 2.56 x10-3 
PBDE209 3.09 x10-4 
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3.3. Conclusions 
Using a scenario that supports precautionary decision making with a single application of 
sewage sludge (50 t ha-1), ten contaminants all returned a relative risk (or risk ratio) greater than 
unity, with a number of these indicating elevated risks to soil health (e.g. PCB 118).  

These included several polychlorinated biphenyls (PCBs 118, 180, 95, 52, 174) which were not 
previously highlighted by the 2018 assessment (Scottish Government 2018) which had a focus 
on human health as the end point of the risk analysis. In updating the PCB database, it should 
be noted that measured concentrations of PCBs in sewage sludge have decreased since the 
2018 assessment. This decrease has been significant enough to lower the 90th percentile 
concentrations entered into the assessment (Table 3.2). The improvement in sewage sludge 
quality is likely a result of PCBs having now been a focus of environmental concern since the 
1960s, with production banned internationally since 2001. It is also worth noting that the 
receiving environment for the sewage sludge, i.e., the soil, has also decreased in PCB content 
(Dendievel et al., 2020). As the focus of this assessment is on sewage sludge as a product, the 
improvements in the receiving environment are not considered explicitly but are indicative of 
the success of legislative intervention. It was decided in this analysis to combine post-2018 
data with the data already collated for the 2018 assessment. Given the continued decrease in 
PCB concentrations in sewage sludge, it is worth noting that lower risk estimates would have 
been achieved if only post-2018 data had been entered into the analysis simply because the 
input data have lower concentrations. Given the worldwide ban on the manufacture of PCBs, it 
is expected that levels of PCBs in sewage sludge would continue to improve.  However, the 
overall quality of sewage sludge is still compromised by the presence of multiple types of 
harmful contaminants many of which cannot be assessed due to lack of data (see Section 5.3). 

The detergents nonylphenol and nonylphenol diethoxylate (NP2EO) also returned values of RR 
greater than unity, similar to the human health risk estimates reported in the 2018 assessment. 
Given the prominence of these contaminants in both assessments the fate of nonylphenols in 
sewage sludge and sludge amended soils warrants concern and should prompt further 
investigation.  

The per- and polyfluoroalkyl substances (PFAS) also returned appreciable risk estimates for 
those that could be assessed (PFOS, PFHxS and PFOA).  It is worth noting that these are only 
three PFAS out of a group of over 10,000 PFAS chemicals. This contrasts with the 2018 
assessment (Scottish Government 2018) where PFOS and PFOA both returned risk estimates 
significantly lower than unity (PFHxS was not assessed in 2018). This result is partly because 
data for PFAS in sewage sludge have become more plentiful and measurement techniques have 
become more refined over the past five years. The post-2018 data have increased 90th 
percentile concentrations for both PFOS and PFOA, but only to a small extent and these 
increases do not account for all the increase in risk seen when comparing the two assessments. 
The current assessment looks at the direct exposure of soil organisms to PFAS added to the soil 
via sewage sludge. As such, this is a far more direct exposure than the 2018 assessment that 
looked at impacts on human health. Risk estimates in the 2018 assessment (Scottish 
Government 2018) therefore reflect the potential for PFAS to enter the terrestrial food chain via 
uptake of these chemicals from the soil pore waters by crops. Overall, given the potential 
impact on soil biota (and therefore soil health), the fate of PFAS in sewage sludge and sludge-
amended soils warrants further investigation. 
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The relative risk estimates presented here are based on a realistic worst-case scenario for 
informing decision making using a ‘heavy’ application of sewage sludge of 50 t ha-1. Typical 
application rates of sewage sludge vary from 5 to 20 t ha-1 depending on soil type, crop type, and 
crop nutrient requirements (BAS, 2019).  As such, this exposure scenario will likely only apply to 
a small proportion of the agricultural land bank. Assuming sludge providers and farmers are 
following guidance and testing sludges and receiving soils, the vast majority of agricultural soils 
are likely to experience lower levels of sewage sludge applications, if at all depending on the 
availability of alternative organic fertilisers. The use of realistic worst-case assumptions for 
informing decision making aimed at protecting the most vulnerable populations of soil biota, 
hence this approach will highlight chemicals posing risk under unusual but legitimate 
scenarios. This is helpful as it gives a level of confidence where we identify compounds that 
despite the worst-case scenario pose little risk to soil biota. The cocktail effect caused by 
multiple exposures to multiple agents is also worth consideration. Little is known about how the 
compounds assessed here combine, degrade, and change over time. The soil biota are 
experiencing exposure to this multitude of chemicals and knowledge of how this affects toxicity 
and impacts is extremely limited. It is most likely that the cocktail effect increases magnitude of 
risk, rather than reduces it. This further strengthens the argument for using scenarios that 
support precautionary decision making as these emphasise risks where they might occur. 

It should also be noted that the study has only considered a single application of sewage sludge 
for the assessment of organic contaminants. The 42 contaminants assessed here all behave 
differently in the environment, some will persist and accumulate in soils, some will degrade, 
some will move away from the exposure site. For some of the contaminants, these behaviours 
are known enough to simulate; but for many they are not. For this reason, a single application 
has been assessed. There are currently no long-term sewage sludge experimental farm plots in 
the UK, and previous ones have focussed on traditional contaminants such as the heavy metals 
regulated under The Sludge (Use in Agriculture) regulations (Cd, Pb, Zn).  Long-term monitoring 
data of organic contaminants on sludge amended soils is lacking but using the precautionary 
approach, based on evidence gathered from previous long-term experiments conducted in the 
UK, Sweden, Germany and the USA, where metals were found to have adverse effects on soil 
microbial parameters (e.g., McGrath et al., 1995) would support soil protection legislation and 
inform the safe and sustainable management of sewage sludge. Findings from the ongoing 2-
year UK Water Industry Research Chemical Investigations Programme Phase 4 (CIP4 - 
Introducing the 4th Phase of the Chemical Investigations Programme - Jenni Hughes, UKWIR 
Strategic Programme Manager) investigating the fate and behaviour of metals, nutrients, and a 
selection of persistent organic pollutants in biosolids including perfluorinated compounds, 
pesticides, phthalates, plasticisers, tyre compounds, pharmaceuticals (including antibiotics) 
as well as microplastics will be valuable. 

 

 

 

 

 

https://ukwir.org/introducing-the-4th-phase-of-the-chemical-investigations-programme-jenni-hughes-ukwir-strategic-programme-manager
https://ukwir.org/introducing-the-4th-phase-of-the-chemical-investigations-programme-jenni-hughes-ukwir-strategic-programme-manager
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4. Pharmaceuticals and Personal Care Products 
 

4.1. Background 
Pharmaceuticals and personal care products (PPCPs) are used for health or cosmetic 
purposes, and include products used on both animals and humans. A diverse collection of tens 
of thousands of chemical substances can be classed as PPCPs, comprising prescription and 
over-the-counter medicines, veterinary medicines, fragrances and cosmetics.  

Pharmaceuticals are designed to modify biochemical and physiological functions of biological 
systems in humans and animals – these properties can unintentionally influence the behaviour 
and fate of microorganisms in the soil or water should their habitats become contaminated with 
these compounds. Major groups of pharmaceuticals include antibiotics including 
antimicrobials, antivirals, etc., disinfectants, steroids, hormones and nutraceuticals (health 
benefit products derived from food sources e.g. dietary supplements), as well as their various 
degradation products. Some pharmaceutical compounds are easily broken down and 
processed in the human body, whilst in other cases, a significant proportion of the compounds 
and their metabolites are eliminated through urine or faeces. Through these routes, some 
pharmaceuticals and their degradation products enter the wastewater stream, and many 
compounds have been detected in sewage sludge and biosolids produced by wastewater 
treatment. 

Unlike pharmaceuticals, personal care products such as cosmetics, shampoos and lotions, are 
directly washed into wastewater during showering and bathing, and hence enter wastewater 
treatment. Many of these compounds and their degradation products have been detected in 
sewage sludge (e.g. Richardson et al., 2005). Once present in sewage sludge, there are both 
theoretical and measured pathways by which soil biota can become exposed to PPCPs 
(Keerthanan et al. 2021; Verlicchi & Zambello, 2015). 

Numerous studies report a range of different classes of pharmaceuticals in domestic sewage, 
including antibiotics, antiepileptics, anticoagulants, analgesics and anti-inflammatories, lipid 
regulators, steroidal compounds, cosmetics, psychostimulants (Pérez-Lemus et al. 2022; 
Mejias et al. 2021; Luo et al., 2014). Several studies have showed that the fate and transport of 
these compounds varies during wastewater treatment, with some compounds completely 
degraded and some only partly degraded (WHO, 2012). 

The half-lives of various PPCPs in sewage sludge applied to land have been investigated by 
several authors. Walters et al. (2010) collated data from previous studies and compared these 
with their own empirical evidence from uncontrolled outdoor pot incubation studies. The results 
indicated that the ‘environmental half-lives’ in uncontrolled incubation experiments were 
greater than those from controlled laboratory incubation experiments, as well as values 
calculated in chemical fate models. This was thought to be due to a variety of factors: 

1. Binding of the compounds within the sewage sludge matrix, reducing their 
bioavailability 

2. The presence of complex pharmaceutical mixtures that may inhibit sludge and soil 
microbial activity and limit degradation 

3. The uncontrolled water content of the sludge matrix and amended soils 
4. The quantity of readily available nutrients within the sludge matrix and amended soils 
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5. Uncontrolled ambient temperatures experienced 
6. Microbial adaptation / acclimatisation to the compounds of interest 
7. The initial concentration of the compounds of interest 

 

To compensate for this potential underestimation in fluxes of PPCPs from the multimedia 
fugacity modelling used in this study (Section 1.2.2), the exposure assessment of the risk 
modelling has adopted ‘reasonable worst-case’ assumptions as a precautionary approach to 
estimating exposure (see Section 1.2).  

Ecotoxicologic impacts of PCPPs added to soil via sewage sludge are evident and can be seen 
as an indication of potential impacts on living organisms, soil health, and indirect impacts on 
humans (Aydin et al. 2022). For example, Carter et al. (2016) showed that earthworms could 
accumulate selected pharmaceutical compounds (fluoxetine, carbamazepine, diclofenac and 
orlistat), while Konradi & Vogel (2013) studied cirpofloxacin, sulfamtheoxazole, ofloxcin and 
clarithromycin; recommending that the presence of these and other antibiotics in sewage 
sludge is monitored to mitigate risks of change to soil microbial populations. During the 2018 
assessment (Scottish Government, 2018) many toxicity and fate data were either absent or 
insufficient to undertake full quantitative risk assessment for many emerging PPCPs of concern 
(Scottish Government, 2018; Higgins et al., 2010). While there has been some limited 
improvement over the past five years, this is largely still the case and the scope and range of risk 
assessments already undertaken for PCPPs remains similar.  Lack of data does not equate to 
lack of risk. 

 

4.2. Previous risk assessments 
Several previous large-scale generalised risk assessments (Gibbs & Jones, 2017 (CIP2 Biosolids 
assessment); Healy et al., 2017; Jensen et al., 2012; Clarke & Smith, 2011; WEAO 2010; Eriksen 
et al., 2009; Smith 2009; WEAO 2001) were reviewed as part of the 2018 assessment (Scottish 
Government, 2018). To this list, the National Chemical Investigations Programme 2020-2022 
(CIP3) assessment of emerging contaminants in biosolids (Thornton & Yates, 2023) was added. 
It was considered that while some of the contaminants listed in the older studies might have 
changed position on these lists in terms of their relative priority, the basic lists still provided a 
sound basis for inclusion within the assessment. It should be noted that where an organic 
chemical is primarily used for non-PCPP purposes, this chemical was not included in the risk 
assessment presented here, but in the assessment for organic and other emerging chemicals 
(Section 3). A summary of the previous risk assessments is provided in Table 4.1 below. 
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Table 4.1 – Chemicals present in sewage sludge and considered in selected risk assessment studies 

Imperial College Reviews 
Danish Risk 
Assessment 

Norwegian Risk 
Assessment 

WEAO Reports 
EPA Research 
Report 

UKWIR National Chemical 
Investigations Programme CIP2 & CIP3 

Smith 2009a Clarke & Smith 
2011a 

Jensen et al. 
2012 

Eriksen et al. 
2009 

WEAO 2010, 
2001 

Healy et al. 2017 
Gibbs & Jones 2017 
(CIP2) 

Thornton & Yates 
2023 (CIP3) 

>1000: 
Linear 
alkylbenzene 
sulphonates 
(LASs) 
 
>100<1000: 
Nonylphenols 
Nonylphenol 
esters 
 
>1 <100 
Tricosan 
Triclocarbans 
Musks 

>1000: 
Steroids: 
Cholesterol 
Coprostanol 
Epicoprostanol 
Quaternary 
ammonium 
compounds (QACs) 
 
>100 <1000 
Polychlorinated 
alkanes 
Polydimethylsiloxanes 
Steroids: 
Campesterol 
Stigmasterol 
 
>1 <100 
Steroids: E1, E2, E3, 
EE2 

Musks 
Pharmaceuticals 

OP/OPEs 
NP/NPEs 
LASs 
Pharmaceuticals: 
Atorvastatin 
Carisoprodol 
Chloprothixene 
Dipyridamole 
Fexofenadine 
Gabapentin 
Levetiracetam 
Losartan 
Mesalazine 
MTP 
Ranitidine 
Sotalol, TC 
Chlorophenolsb 
Chlorobenzenesb 
TCSb 
Musks (galaxolide, 
tonalide)b 
BHTb 

VOCs 
LASs 
Estrogenic 
hormones 
PCDD/Fs 
Pharmaceuticals 
PBDEs 
Musks 
Triclosan 
Triclocarbans 

Triclosan 
Triclocarbans 

Diclofenac 
Ibuprofen 
Atorvastatin 
Ortho-
hyroxyatorvastatin 
Para-
hydroxyatorvastatin 
Propranolol 
Atenolol 
Erythromycin 
Norerythromycin 
Azithromycin 
Clarithromycin 
Ciprofloxacin 
Metformin 
Ranitidine 
Carbamazepine 
Epoxycarbamazepine 
Sertraline 
Norsertraline 
Fluoxetine 
Tamoxifen 
Trixylenyl phosphate 
 

Triclosan 
Galaxolide 
Tonalide 
Celestolide 
Phantolide 
Traeolide 
N-siloxanes 
Atorvastatin 
Ortho-
hyroxyatorvastatin 
Para-
hydroxyatorvastatin 
Azithromycin 
Epoxycarbamazepine 
Ciprofloxacin 
Climbazole 
Fluoxetine 
Norfloxacin 
Ofloxacin 

 

aValues correspond to average concentrations in sewage sludge (mg kg-1 DW) 
bThese compounds were not formally risk assessed due to data limitations 



4.3. Risk Assessment 
Chemicals listed in Table 4.1 were included in the risk assessment if; (i) there primary 
application was for pharmaceutical or personal care products (PPCPs), (ii) if reliable distribution 
coefficients were available that satisfied the requirements of the multi-media fugacity models 
(Section 1.2.2), and (iii) if reliable predicted no effect concentration (PNEC) values were 
available, at least for aquatic environments. The full list of PPCPs, their physical-chemical 
properties and PNEC values are listed in Table 4.2. 

 

Table 4.2 – Physico-chemical properties and PNEC values for pharmaceutical and personal 
care products (PPCPs) entered into the risk assessment. 

PPCP name  
(IUPAC) 

Water 
solubility 
(mg l-1 @ 
25ºC) 

Vapour 
preddure 
(mm Hg @ 
25ºC) 

Henry’s 
constant 
(atm-m3 
mol-1) 

Log Kow 
PNEC 
(mg kg-1) 

Triclocarban 
(3-(4-chlorophenyl)-1-(3,4-
dichlorophenyl)urea) 

2.37x10-3 
(USEPA, 2012) 

3.60x10-9 
(USEPA, 2012) 

4.50x10-11 
(NCCT, 
2024) 

4.90  
(USEPA, 

2012) 

4.00x10-2 
(Musee, 

2018) 
Triclosan 
(5-chloro-2-(2,4-dichlorophenoxy)phenol) 

1.00x101 
(Yalkowsky et 

al., 2010) 

4.60x10-6 
(USEPA, 
2012)a 

2.10x10-8 
(NCCT, 
2024) 

4.76  
(NITE 
2012) 

2.00x10-2 
(Musee, 

2018) 
Carbamazepine 
(5H-dibenz[b,f]azepine-5-carboxamide) 1.80x101 

(USEPA, 2012) 
1.84x10-7 

(USEPA, 2012) 

1.10x10-10 
(NCCT, 
2024) 

2.45  
(Dal Pozzo 

et al., 
1989) 

5.00x10-2 
(Biel-Maeso 
et al., 2018) 

Cyclomethicone 5 
(decamethyl-1,3,5,7,9,2,4,6,8,10-
pentaoxapentasilicane) 

1.70x10-2 
(Kochetkov et 

al., 2001) 

3.00x10-1 
(ECHA, 2015) 

3.30x101 
(NCCT, 
2024) 

8.06  
(Xu et al., 

2014) 

1.15x10-2 
(Huygens et 

al. 2022) 
Cyclomethicone 6 
(decamethylcyclohexasiloxane) 

5.10x10-3 
(Varaprath et 

al., 1996)b 

1.69x10-2 
(Lei et al., 

2010) 

2.50x101 
(NCCT, 
2024) 

8.87  
(Xu et al., 

2014) 

1.15x10-2 
(Huygens et 

al., 2022) 
Caffeine 
(1,3,7-trimethylxanthine) 2.16x104 

(Yalkowsky et 
al., 2010) 

9.00x10-7 
(Emel’yanenko 

& Verevkin 
2008) 

1.10x10-11 
(NCCT, 
2024) 

-0.07 
(Hansch et 
al., 1995) 

1.03x10-1 
(Mejías et 
al., 2021) 

Diclofenac 
(2-{2-[(2,6-
dichlorophenyl)amino]phenyl}acetic acid) 

2.37x100 
(Fini et al., 

1986) 

6.14x10-8 
(USEPA, 2012) 

1.55x10-10 
(USEPA 
OPERA, 

2024) 

4.51 
(Avdeef, 

1987) 

3.42x10-2 
(Mejías et 
al., 2021) 

Ibuprofen 
((RS)-2-(4-(2-methylpropyl)phenyl)propanoic 
acid) 

2.10x101 
(Yalkowsky & 
Dannenfelser 

1992) 

4.74x10-5 
(Daubert & 

Danner 1989) 

1.50x10-7 
(NCCT, 
2024) 

3.97 
(Avdeef 
1993) 

4.65x10-2 
(Mejías et 
al., 2021) 

Atorvastatin 
((3R,5R)-7-[2-(4-fluorophenyl)-3-phenyl-4-
(phenylcarbamoyl)-5-(propan-2-yl)-1H-
pyrrol-1-yl]-3,5-dihydroxyheptanoic acid) 

1.12x10-3 
(USEPA, 2012) 

6.56x10-10  
(USEPA 

OPERA, 2024) 

2.40x10-23 
(NCCT, 
2024) 

6.36 
(USEPA, 

2012) 

6.89x10-2 
(Mejías et 
al., 2021) 

Atenolol 
((2RS)-2-[4-(2-hydroxy-3-
isopropylaminopropoxy)phenyl]propan-2-ol) 

1.33x104 
(McFarland et 

al., 2001) 

1.11x10-9 
(USEPA 

OPERA, 2024) 

4.35x10-10 
(USEPA 
OPERA, 

2024) 

0.16 
(Hansch et 
al., 1995) 

3.75x10-1 
(Mejías et 
al., 2021) 

Erythromycin 
((3R,4S,5S,6R,7R,9R,11R,12R,13S,14R)-6-
{[(2S,3R,4S,6R)-4-
(dimethylamino)phenyl]methyl}oxane-2-
carboxylic acid) 

2.00x103 
(Merck, 2024) 

2.12x10-25 
(USEPA, 2012) 

1.28x10-11 
(USEPA 
OPERA, 

2024) 

4.02 
(McFarland 

et al., 
1997) 

4.08x10-3 
(Mejías et 
al., 2021) 
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Azithromycin 
(9-deoxo-9a-aza-9a-methyl-9a-
homoerythromycin A) 

2.37x100 
(USEPA, 2012) 

2.65x10-24 
(USEPA, 2012) 

1.33x10-11 
(USEPA 
OPERA, 

2024) 

4.02  
(McFarland 

et al., 
1997) 

4.10x101 
(Mejías et 
al., 2021) 

Clarithromycin 
((3R,4S,5S,6R)-6-O-methylerythromycin A) 

1.69x100 
(USEPA, 2012) 

2.32x10-25 
(USEPA, 2012) 

1.01x10-10 
(USEPA 
OPERA, 

2024) 

3.16 
(McFarland 
et al 1997) 

6.72x10-3 
(Mejías et 
al., 2021) 

Ciprofloxacin 
(1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-
1-yl)-1,4-dihydroquinoline-3-carboxylic acid) 

3.00x104 
(Nowara et al., 

1997) 

2.85x10-13 
(USEPA, 2012) 

9.46x10-12 
(USEPA 
OPERA, 

2024) 

0.28 
(Takács - 
Novák et 
al., 1992) 

2.14x10-3 
(Mejías et 
al., 2021) 

Metformin 
(N,N-dimethylimidodicarbonimidic diamide) 

1.06x106 
(USEPA, 2012) 

7.58x10-5 
(USEPA, 2012) 

7.60x10-16 
(NCCT, 
2024) 

-2.64 
(USEPA, 

2012) 

1.34x101 
(Mejías et 
al., 2021) 

Ranitidine 
(N-(2-[(5-[(dimethylamino)methyl]furan-2-
yl)methylthio]ethyl)-N’-methyl-2-
nitroethene-1,1-diamine) 

2.47x101  
(Ley, 2000) 

2.99x10-9 
(USEPA 

OPERA, 2024) 

7.29x10-9 
(USEPA 
OPERA, 

2024) 

0.22 
(USEPA 
OPERA, 

2024) 

2.90x10-4 
(Helwig et 
al., 2015)c 

Sertraline 
((1S,4S)-4-(3,4-dichlorophenyl)-N-methyl-
1,2,3,4-tetrahydronaphthalen-1-amine) 

3.50x10-2 
(Drugbank, 

2024) 

3.36x10-6 
(USEPA 

OPERA, 2024) 

1.15x10-6 
(USEPA 
OPERA, 

2024) 

4.55 
(USEPA 
OPERA, 

2024) 

1.58x10-3 
(Mejías et 
al., 2021) 

Norsertraline 
((1S,4S)-4-(3,4-dichlorophenyl)-N-methyl-
1,2,3,4-tetrahydronaphthalen-1-amine) 

1.04x10-6 
(USEPA 

OPERA, 2024) 

1.07x10-9 
(USEPA 

OPERA, 2024) 

6.43x10-7 
(USEPA 
OPERA, 

2024) 

4.94 
(USEPA 
OPERA, 

2024) 

1.58x10-3 
(Mejías et 
al., 2021) 

Tamoxifen 
((Z)-2-[4-(1,2-diphenyl-1-buten-1-
yl)phenoxy]-N,N-dimethylethanamine) 

1.67x101 
(USEPA, 2012) 

3.46x10-8 
(USEPA, 2012) 

2.21x10-8 
(USEPA 
OPERA, 

2024) 

6.30 
(USEPA, 

2012) 

8.10x10-5 
(Orias et 

al., 2015)c 

Dipyridamole 
(2-({6-[bis(2-hydroxyethyl)amino]-4,8-
bis(piperidin-1-yl)-[1,3]diazino[5,4-
d]pyrimidin-2-yl}(2-
hydroxyethyl)amino)ethan-1-ol) 

9.22x102 
(Human 

Metabolome 
Database, 

2024) 

9.30x10-10 
(USEPA 

OPERA, 2024) 

1.21x10-11 
(USEPA 
OPERA, 

2024) 

2.06 
(USEPA 
OPERA, 

2024) 

ND 

Fexofenadine 
(()-4-[1-hydroxy-4-[4-
hydroxydiphenylmethyl)-1-piperidinyl]-
butyl]-,-dimethylbenzeneacetic acid) 

2.40x10-2 
(UESPA, 2012) 

2.56x10-9 
(USEPA 

OPERA, 2024) 

2.51x10-8 
(USEPA 
OPERA, 

2024) 

2.81 
(USEPA, 

2012) 

4.00x10-2 
(Jonsson et 
al., 2014)c 

Gabapentin 
(2-[1-(aminomethyl)cyclohexyl]acetic acid) 

4.49x103 
(USEPA, 2012) 

2.94x10-10 
(USEPA, 2012) 

4.87x10-8 
(USEPA 
OPERA, 

2024) 

-1.10 
(Sangster, 

2005) 

1.00x100 
(He et al., 

2019; 
Minguez et 
al., 2016)c 

Levetiracetam 
((2S)-2-(2-oxypyrrolodin-1-yl)butanamide) 

1.04x105 
(PDR, 2024) 

3.50x10-6 
(USEPA, 2012) 

1.77x10-9 
(USEPA 
OPERA, 

2024) 

-0.49 
(USEPA, 

2004) 

5.74x10-4 
(Minguez et 
al., 2016)c 

Sotalol 
(N-(4-{1-hydroxy-2-[(propan-2-
yl)amino]ethyl}phenyl)methanesulfonamide) 

5.51x103 
(Drugbank, 

2024) 

2.19x10-10 
(USEPA 

OPERA, 2024) 

1.25x10-9 
(USEPA 
OPERA, 

2024) 

0.55 
(USEPA 
OPERA, 

2024) 

1.24x10-4 

(Minguez et 
al., 2016)c 

Benzothiazole 
(benzothiazole) 

4.30x100 
(Human 

Metabolome 
Database, 

2024) 

1.60x10-2 
(USEPA 

OPERA, 2024) 

9.53x10-6 
(USEPA 
OPERA, 

2024) 

2.05 
(USEPA 
OPERA, 

2024) 

7.01x10-2 
(EU, 2008) 

(a)at 20C; (b)at 23C; (c)derived from an aquatic PNEC 
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Initial concentrations of PPCPs were set based on the ‘realistic worst-case’ paradigm (Longhurst 
et al., 2019; Scottish Government 2018; Hough et al. 2012). The data used in the 2018 
assessment (Scottish Government 2018) was used as an initial starting point, and these data 
were added to with recent data published since 2018. Concentrations used in the current 
assessment were derived from 90%ile values from the combined data sets (Table 4.3). 

 

 

Table 4.3 – Initial concentrations of pharmaceutical and personal care products (PPCPs) in 
sewage sludge prior to spreading. 

Chemical 
(IUPAC) 

Concentration in sewage 
sludge (mg kg-1) Reference(s) 

Triclocarban 
(3-(4-chlorophenyl)-1-(3,4-
dichlorophenyl)urea) 

1.12x102 
Zhu et al., 2019 

USEPA, 2012 

Triclosan 
(5-chloro-2-(2,4-dichlorophenoxy)phenol) 3.20x100 

Zhu et al., 2019 
USEPA, 2012 

Stasinakis et al., 2008 

Carbamazepine 
(5H-dibenz[b,f]azepine-5-carboxamide) 4.85x10-2 

Pagaling et al., 2023  
Thornton & Yates 2023 

Aydin et al., 2022 
Kodešová et al., 2019 
Gibbs & Jones 2017 

USEPA, 2012 
UKWIR, 2012 

JRC, 2012 
Cyclomethicone 5 
(decamethyl-1,3,5,7,9,2,4,6,8,10-
pentaoxapentasilicane) 

2.58x103 Harrison et al., 2006 

Cyclomethicone 6 
(decamethylcyclohexasiloxane) 2.58x103 Harrison et al., 2006 

Caffeine 
(1,3,7-trimethylxanthine) 4.96x10-2 USEPA, 2012 

JRC, 2012 

Diclofenac 
(2-{2-[(2,6-
dichlorophenyl)amino]phenyl}acetic acid) 

2.47x10-2 

Pagaling et al., 2023 
Thornton & Yates 2023  

Aydin et al., 2022 
Gibbs & Jones 2017 

UKWIR, 2012 
JRC, 2012 

Ibuprofen 
((RS)-2-(4-(2-methylpropyl)phenyl)propanoic 
acid) 

2.64x10-2 

Pagaling et al., 2023 
Thornton & Yates 2023  

Aydin et al., 2022 
Gibbs & Jones 2017 

UKWIR, 2012 
JRC, 2012 

USEPA, 2012 
Gomez et al., 2007 

Carballa, 2004 

Atorvastatin 8.73x10-2 Thornton & Yates 2023 
Gibbs & Jones 2017 



66 
 

((3R,5R)-7-[2-(4-fluorophenyl)-3-phenyl-4-
(phenylcarbamoyl)-5-(propan-2-yl)-1H-
pyrrol-1-yl]-3,5-dihydroxyheptanoic acid) 

Atenolol 
((2RS)-2-[4-(2-hydroxy-3-
isopropylaminopropoxy)phenyl]propan-2-ol) 

2.06x10-1 

Pagaling et al., 2023 
Thornton & Yates 2023  

Aydin et al., 2022 
Gibbs & Jones 2017 

UKWIR, 2012 

Erythromycin 
((3R,4S,5S,6R,7R,9R,11R,12R,13S,14R)-6-
{[(2S,3R,4S,6R)-4-
(dimethylamino)phenyl]methyl}oxane-2-
carboxylic acid) 

4.48x10-2 

Pagaling et al., 2023 
Thornton & Yates 2023  

Aydin et al., 2022 
Gibbs & Jones 2017 

USEPA, 2012 
UKWIR, 2012 

 

Azithromycin 
(9-deoxo-9a-aza-9a-methyl-9a-
homoerythromycin A) 

1.27x10-1 

Thornton & Yates 2023 
Aydin et al., 2022 

Gibbs & Jones 2017 
USEPA, 2012 

Clarithromycin 
((3R,4S,5S,6R)-6-O-methylerythromycin A) 1.43x10-1 

Thornton & Yates 2023 
Aydin et al., 2022 

Gibbs & Jones 2017 
USEPA, 2012 
UKWIR, 2012 

Ciprofloxacin 
(1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-
1-yl)-1,4-dihydroquinoline-3-carboxylic acid) 

3.71x10-1 

Thornton & Yates 2023 
Aydin et al., 2022 

Gibbs & Jones 2017 
USEPA, 2012 
UKWIR, 2012 

Vieno et al., 2006 
Golet et al., 2003 

Metformin 
(N,N-dimethylimidodicarbonimidic diamide) 4.00x101 

Thornton & Yates 2023 
Gibbs & Jones 2017 

USEPA, 2012 
Eggen et al., 2011 

Ranitidine 
(N-(2-[(5-[(dimethylamino)methyl]furan-2-
yl)methylthio]ethyl)-N’-methyl-2-
nitroethene-1,1-diamine) 

9.00x10-2 
Thornton & Yates 2023 

Gibbs & Jones 2017 
USEPA, 2012 

Sertraline 
((1S,4S)-4-(3,4-dichlorophenyl)-N-methyl-
1,2,3,4-tetrahydronaphthalen-1-amine) 

1.20x100 Thornton & Yates 2023 
Gibbs & Jones 2017 

Norsertraline 
((1S,4S)-4-(3,4-dichlorophenyl)-N-methyl-
1,2,3,4-tetrahydronaphthalen-1-amine) 

7.60x10-1 Thornton & Yates 2023 
Gibbs & Jones 2017 

Tamoxifen 
((Z)-2-[4-(1,2-diphenyl-1-buten-1-
yl)phenoxy]-N,N-dimethylethanamine) 

2.35x10-2 
Thornton & Yates 2023 

Aydin et al., 2022 
Gibbs & Jones 2017 

Dipyridamole 
(2-({6-[bis(2-hydroxyethyl)amino]-4,8-
bis(piperidin-1-yl)-[1,3]diazino[5,4-
d]pyrimidin-2-yl}(2-
hydroxyethyl)amino)ethan-1-ol) 

2.48x10-1 Okuda et al., 2008 

Fexofenadine 1.70x10-4 Golovko et al., 2014 
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(()-4-[1-hydroxy-4-[4-
hydroxydiphenylmethyl)-1-piperidinyl]-
butyl]-,-dimethylbenzeneacetic acid) 
Gabapentin 
(2-[1-(aminomethyl)cyclohexyl]acetic acid) 1.00x10-3 Writer et al., 2013 
Levetiracetam 
((2S)-2-(2-oxypyrrolodin-1-yl)butanamide) 1.25x10-2 Gurke et al., 2015 
Sotalol 
(N-(4-{1-hydroxy-2-[(propan-2-
yl)amino]ethyl}phenyl)methanesulfonamide) 

1.58x10-2 Aydin et al .,2022 
Radjenović et al., 2009 

Benzothiazole 
(benzothiazole) 6.44x101 Harrison et al., 2006 

 

Combining partition coefficients (Table 4.2) with initial concentrations in sewage sludge (Table 
4.3) within equations 1.1 – 1.7 (section 1.2.2), it was possible to estimate the concentrations of 
each PPCP that would remain in the soil amended with sewage sludge, as opposed to migrating 
to soil pore water or soil pore air (Figure 4.1). Those contaminants with the greatest propensity 
to partition to the soil pore water are subsequently more likely to leach to surface/groundwater 
or be taken up by plants including food crops. 

  

 

Figure 4.1 – Partitioning [%, ppm] of pharmaceutical and personal care products (PCPPs) 
between soil amended with sewage sludge, soil pore water, and soil pore air spaces given initial 
starting concentrations in sewage sludge (Table 4.3) 
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4.3.1. Risk Characterisation 
The current assessment focuses on ecological impacts of the contaminants of interest on soil 
biota. To this end, the predicted concentrations of each PPCP in the sewage-amended soil 
fraction were assumed to be equivalent to predicted effect concentrations (PEC) to which soil 
biota are exposed. Relative risks (or risk ratios; RR) were then derived as the comparison of the 
PEC to published predicted no-effect level concentrations (PNEC) for soil (Table 4.2, see 
Section 1.2.4). Figure 4.2 provides a visualisation of RR values for the PPCPs, here using a log10 
scale. Thus, any PPCP returning a log10(RR) greater than zero is indicative that we may expect to 
see an appreciable impact on soil biota as a result of spreading sewage sludge on the land. For 
convenience, the un-logged values of RR are also listed in Table 4.4. 

 

 

 

 

 

Figure 4.2 – Estimates of relative risk (or risk ratios) presented using a logarithmic scale, 
log(RR), for each pharmaceutical and personal care product (PPCP) based on the ratio of the 
predicted effect concentration (PEC; see Figure 4.1) to the predicted no-effect concentration 
(PNEC; see Table 4.2). These estimates are based on a single application of sewage sludge at 50 
t ha-1. A log(RR) > 0 indicates that further investigation may be required. 
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Table 4.4 – Estimates of relative risk or risk ratio (RR) for each organic contaminant based on the 
ratio of predicted effect concentration (PEC; see Figure 4.1) to the predicted no-effect 
concentration (PNEC; see Table 4.2). These estimates are based on a single application of 
sewage sludge at 50 t ha-1.  An RR > 1 (shaded in blue) indicates that further investigation may be 
required. 

Contaminant Risk Ratio, RR 
Cyclomethicone 5  2.77 x102 
Cyclomethicone 6 2.77 x102 
Triclocarban 6.81 x101 

Benzothiazole 1.13 x101 
Sertraline 9.38 x100 
Tamoxifen 8.17 x100 
Norsertraline 5.94 x100 
Ranitidine 3.83 x100 
Ciprofloxacin 3.75 x100 
Triclosan 2.93 x100 
Levetiracetam  2.69 x10-1 
Clarithromycin 2.54 x10-1 
Erythromycin 2.37 x10-1 
Sotalol 5.07 x10-2 
Metformin 3.68 x10-2 
Atenolol 1.57 x10-2 
Atorvastatin 1.57 x10-2 
Caffiene 5.96 x10-3 
Carbamazepine 5.16 x10-3 
Ibuprofen 7.16 x10-5 
Fexofenadine 5.25 x10-5 
Azithromycin 3.19 x10-5 
Diclofenac 2.17 x10-5 
Gabapentin 1.23 x10-5 

 

 

4.4. Conclusions 
Under a scenario that supports precautionary decision making with a single application of 
sewage sludge (50 t ha-1), 10 out of 24 PPCP compounds returned a relative risk (or risk ratio) 
greater than unity (note that it was not possible to assess dipyridamole as no PNEC values were 
available) and some demonstrating RR values as high as 277. The remaining 14 compounds 
posed little appreciable risk to soil biota.  

Six of the compounds identified as posing a significant risk were also highlighted by the 2018 
assessment (Scottish Government 2018), namely, cyclomethicone 5 & 6, triclocarban, 
benzothiazole, sertraline and tamoxifen. While the current assessment has a different focus to 
the 2018 assessment (direct ecological impact as opposed to indirect impact on human health 
via the terrestrial food chain), returning the same compounds as being prominent provides 
some confidence that these contaminants could have detrimental impacts on environmental 
and human health. In addition to the six compounds listed above, norsertraline, ranitidine, 
ciprofloxacin, and triclosan also returned an appreciable risk. Apart from norsertraline, these 
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four compounds did not feature very highly in the 2018 human health assessment, however it 
should be noted that for ranitidine and tamoxifen no measured PNEC values were available for 
the soil environment (Table 4.2).   

These findings make it clear that a number of PPCPs are expected to have a detrimental impact 
on soil health. This assessment cannot ascertain the nature of these impacts (short- or long-
term, reversible or irreversible) therefore further empirical evidence gathering is required. As 
well as impacts on soil biota, human and animal health concerns over increased antimicrobial 
resistance are noteworthy. The release of persistent pharmaceuticals into the environment has 
been linked to the acceleration and spread of antimicrobial resistance where species of 
bacteria, fungi and viruses become immune to commonly used antimicrobial medicines 
(Frascaroli et al. 2021).  

The relative risk estimates presented here are based on a scenario that supports precautionary 
decision making by using a ‘heavy’ application of sewage sludge of 50 t ha-1. Typical application 
rates of sewage sludge should vary from 5 to 20 t ha-1 depending on crop nutrient requirements 
(BAS, 2019). Assuming sludge providers and farmers are following guidance and testing sludges 
and receiving soils, the majority of agricultural soils are likely to experience lower levels of 
sewage sludge application   The risks highlighted here are important considerations on a site-
specific basis. Farm site-specific factors such as cropping system, climate, soil types, land use 
and historic land management practices and sources of soil contamination should also be 
considered. Risks could be reduced by using alternative, presumably less contaminated organic 
fertilisers such as green manures, animal manures or digestates/composts derived from them. 
This is particularly so where the fertiliser has no uncontrolled elements (cf. on-farm composts 
with on-farm sourced feedstocks which is highly controlled to source-segregated municipal 
composts with mixed uncontrolled domestic feedstocks). Similarly, many WWTPs treat 
industrial wastewater alongside domestic wastewater will result in a more contaminated 
sewage sludge product. Risks could also potentially be reduced through improved nutrient 
management if crop nutrient requirements can be met using lower sewage sludge application.  

The realistic worst-case approach adopted here aims to support precautionary decision 
making. It uses legitimate maximum values, thus highlights where current legislation is not 
protective. Hence this approach will derive appreciable risk estimates where an ‘average’ or 
‘typical’ scenario might not. This approach is helpful as it gives a level of confidence where we 
identify PPCPs that based on assumptions pose limited risk to soil biota. The cocktail effect 
caused by multiple exposures to multiple agents is also an important consideration. Little is 
known about how the compounds assessed here combine, degrade, and change over time. The 
soil biota are experiencing exposure to this multitude of chemicals and knowledge of how this 
affects toxicity and impacts is extremely limited. However, it is most likely that the cocktail 
effect increases the magnitude of risk. Given this, the use of a realistic worst case as opposed 
to an average or typical scenario is again appropriate, as it is more precautionary and therefore 
accounts for this uncertainty to some extent. 

It should be noted that the assessment has only considered a single application of sewage 
sludge for the assessment of PPCPs. The 26 PPCPs assessed here (25 where data were 
sufficient to undertake a full assessment) all behave differently in the environment, some will 
persist and accumulate, some will degrade, some will move away from the exposure site but will 
still remain within the wider environment. For some of the PPCPs, these behaviours are known 
well enough to simulate, but for others, they are not. A simple assessment, where repeated 
applications are taken as additive will over-estimate risk so was not considered appropriate. For 
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these reasons, a single application of sewage sludge has been assessed here as was the case in 
the 2018 assessment (Scottish Government 2018). 

As mentioned in Section 3, there are currently no long-term sewage sludge experimental farm 
plots in the UK, and previous ones have focussed on traditional contaminants such as the heavy 
metals regulated under The Sludge (Use in Agriculture) regulations (e.g. Cd, Pb, Zn).  Long-term 
monitoring data of PCPPs in sludge amended soils is lacking but using the precautionary 
approach, based on such evidence gathered from previous long-term experiments conducted in 
the UK, Sweden, Germany and the USA, where metals were found to have adverse effects on 
soil microbial parameters (cite McGrath et al., 1995) would support soil protection legislation 
and help inform the safe and sustainable management of sewage sludge. Findings from the 
ongoing 2-year UK Water Industry Research Chemical Investigations Programme Phase 4 (CIP4 - 
Introducing the 4th Phase of the Chemical Investigations Programme - Jenni Hughes, UKWIR 
Strategic Programme Manager)  investigating the fate and behaviour of metals, nutrients, and a 
selection of persistent organic pollutants, microplastics, as well as PCPPs (including 
antibiotics) will be valuable. The development of new treatment technologies that can 
effectively remove PPCPs from wastewater e.g., NyexTM water treatment (Arvia, 2024), and 
improved source control for PPCPs is also important e.g., manufacturers signing up to initiatives 
such as the MADE SAFE™ WISE list (MADE SAFE™, 2024). 

 

 

  

https://ukwir.org/introducing-the-4th-phase-of-the-chemical-investigations-programme-jenni-hughes-ukwir-strategic-programme-manager
https://ukwir.org/introducing-the-4th-phase-of-the-chemical-investigations-programme-jenni-hughes-ukwir-strategic-programme-manager
https://madesafe.org/pages/wise-list-powered-by-made-safe#:~:text=The%20Wise%20List%20bans%20or%20restricts%20over%2015%2C000,-%20Neurotoxicants%20-%20Formaldehyde%20releasers%20-%20Heavy%20metals
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5. Synthesis 
In this section, common threads that cut across all the contaminants assessed in Sections 2 – 4 
are discussed.  

 

5.1. Pressures on agricultural soils 
Agricultural soils face numerous pressures that threaten their ability to support sustainable 
food production and maintain ecosystem services. A recent report by Environmental Standards 
Scotland, highlighted the various risks and threats to our soil resource, including risks 
presented by current legislation being either disjointed, fragmented or contradictory 
(Environmental Standards Scotland 2024). 

One of the most significant issues is biodiversity loss within soil ecosystems, hence why this is 
the focus of the current assessment. Intensive farming practices, including monoculture 
cropping, heavy tillage, and excessive use of agrochemicals have contributed to biodiversity 
decline (e.g., Osumanu & Kosoe 2023; Stein-Bachinger et al. 2022; Frøslev et al. 2022). The 
decline in biodiversity affects crucial soil functions such as nutrient cycling, organic matter 
decomposition, and pest control. Ultimately, reduced soil function impacts negatively on soil 
health and crop productivity (Parikh & James 2012). 

Soil erosion is another major concern for agricultural land. Conventional tillage practices, 
especially on sloped terrain, expose soil to wind and water erosion. The extent of which is soil 
type dependent (Montgomery 2007). Soil erosion strips away the nutrient rich topsoil, reducing 
soil fertility and organic matter content. Soil erosion not only diminished on-site productivity but 
also causes off-site environmental problems such as sedimentation in water bodies and 
increased flood risk (Mahabaleshwara & Nagabhushan, 2014). The rate of soil loss often 
exceeds the natural rate of soil formation, making erosion a critical threat to long-term 
agricultural stability (Parikh & James 2012). With respect to the current assessment, soil erosion 
presents the mass transportation of large amounts of contaminants from soils into the aquatic 
environment and is particularly pertinent to those chemicals with long half-lives including so 
called forever chemicals such as PFAS (Sima & Jaffé 2021). 

Nutrient depletion is a growing problem in many agricultural systems, particularly in regions 
with intensive farming. Continuous cropping without adequate nutrient management leads to 
exhaustion of soil nutrients, decreased crop yields, and quality (Parikh & James 2012). Sewage 
sludge and other fertilisers can temporarily address this issue but as we have seen in this 
assessment, their use can lead to environmental pollution. Organic matter is crucial for nutrient 
retention, thus organic fertilisers such as sewage sludges, manures, composts do provide some 
advantages over inorganic alternatives. However, as this assessment shows, it is a delicate 
balance between maintaining soil nutrient status while minimising negative impacts on soil 
function. 

Soil contamination itself poses significant threats to agricultural soil functions. The 
accumulation of metals, pesticides and other organic contaminants, pharmaceuticals, 
plastics, and other pollutants can have long-lasting and irreversible impacts on soil health and 
food safety (see below). Sources of contamination include agricultural amendments such as 
sewage sludge, manures, composts, digestates, etc. and industrial activities, waste disposal 
practices, and overuse of agrochemicals. Agricultural amendments that have an uncontrolled 
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component, such as being sourced from waste streams that have been source segregated by 
the general population, or where multiple waste streams are combined for treatment, are likely 
to be most contaminated. Soils that are contaminated not only pose risks to human health 
through the food chain but also negatively affect soil biodiversity and overall ecosystem 
functioning (Parikh & James 2012). Addressing soil contamination often requires complex and 
costly remediation efforts, highlighting the importance of prevention and a precautionary 
approach to soil management (Pettersson & Johansson, 2022). 

 

5.2. The cocktail effect 
While the assessment presented here considered each chemical agent or group of agents in 
isolation of each other, in reality, application of sewage sludge to agricultural soils introduces 
these chemicals as a complex mixture that can have synergistic effects on soil biota. This 
chemical cocktail includes microplastics, organic and emerging chemicals, pharmaceutical 
and personal care products, as well as other agents not covered by the current assessment 
(e.g., pathogens, resistance genes for antibiotics and agrichemicals, metals including 
technology critical elements; Pozzebon & Seifert 2023). The combined impact of these 
contaminants on soil ecosystems can be more significant than the additive effects of the 
individual compounds alone which is one reason the current assessment has adopted an 
approach that supports precautionary decision making. For instance, the combined effects of 
PFAS have been found to alter microbial community functions and reduce the biodiversity and 
connectivity of soil bacteria (Cao et al. 2022; Wu et al. 2022). Similarly, the presence of 
microplastics can act as carriers for other environmental contaminants including PCBs, 
dioxins, PAHs, etc. (e.g., Shi et al. 2020). Microplastics facilitate transport of chemicals from 
different environmental compartments (soil to water, etc.) and the small size of microplastics 
allows them to be easily ingested by a wide range of organisms (Godoy et al. 2019). The ability of 
microplastics to carry chemicals deep into organisms is particularly concerning. The smallest 
plastics, often called nanoplastics can potentially cross biological barriers, including cell 
membranes (Ašmonaitė et al. 2020). Overall, these cocktail effects are difficult to identify and 
dose-response data that are useable within a risk assessment framework are essentially non-
existent. For these reasons, while the cocktail effect must be acknowledged, we cannot 
currently assess it with any suitable level of certainty. Evidence as indicated above suggests 
that as sewage sludge does include a wide variety of contaminants (many of which are unable 
to be tested here due to lack of data), the combined effects of chemicals will inevitably raise the 
risk to the health of soil biota.   

 

5.3. Repeated application of sewage sludge 
Repeated application of sewage sludge on agricultural land can have various significant 
impacts. Primarily, concerns are around the accumulation of contaminants, and this issue was 
first observed with elevated soil levels of trace metals such as cadmium, copper, mercury, 
nickel and zinc (Purves 1986). Indeed, the Sludge (Use in Agriculture) regulations and 
associated Code of Practice was developed bearing in mind the management of heavy metal 
accumulation in topsoil (Sewage sludge in agriculture: code of practice for England, Wales and 
Northern Ireland - GOV.UK (www.gov.uk)). In addition, those organic pollutants and 
pharmaceuticals that display strong sorption behaviours to soil particles (see Figures 3.1 and 

https://www.gov.uk/government/publications/sewage-sludge-in-agriculture-code-of-practice/sewage-sludge-in-agriculture-code-of-practice-for-england-wales-and-northern-ireland
https://www.gov.uk/government/publications/sewage-sludge-in-agriculture-code-of-practice/sewage-sludge-in-agriculture-code-of-practice-for-england-wales-and-northern-ireland
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4.1), and are persistent (i.e., are slow to degrade) can also accumulate in soil following repeated 
applications of sewage sludge (e.g., Magid et al. 2020; Pulkrabová et al. 2019). Indeed, some 
organic chemicals are very persistent with some PFAS taking over 1000 years to degrade in soil 
(Russell et al. 2008). Microplastics, by their nature will accumulate in soil following repeated 
applications of material containing MPs (Bondarczuk et al. 2016). There are also reports that 
repeated applications of sewage sludge can alter microbial communities and enhance the 
spread of anti-microbial resistance (Bondarczuk et al. 2016). Emerging contaminants, including 
pharmaceuticals and pharmaceutical residues are poorly understood with regards their long-
term impact on soil ecosystems (Bolesta et al. 2022).  

A proportion of this accumulation will be irreversible (>lifetime), though there is a tendency for 
reduced bioavailability of contaminants over time. However, this is only really understood for 
metals with minimal evidence for organic, pharmaceutical, and plastic pollution (Purves 1986). 
The soil itself has significant buffering capacity, and this plays a crucial role in mitigating the 
potential impacts of pollutants introduced through sewage sludge application and other routes. 
Buffering is particularly high in clay, calcareous, and organic-rich soils, and indeed the organic 
matter introduced by the application of sewage sludge will also enhance the soils buffering 
capacity. However, decomposition of organic matter over time will also act to release sorbed 
contaminants enhancing their availability to organisms. It is well established that conventional 
soil management techniques such as ploughing enhance degradation of soil organic content 
(e.g., Stockfisch et al. 1999). The complexity of the chemical mixtures present in sludge and 
other agricultural amendments (manures, slurries, composts, etc.) makes them difficult to 
assess and regulate with respect to overall impact on soil and ecosystem health. 

In the current assessment, accumulation over repeated applications of sewage sludge was only 
assessed for microplastics. To achieve this, it was assumed that plastic particles were inert 
thus the only degradation was via movement out of the system (i.e., by leaching and run-off to 
surface water). On this basis, the current assessment indicates that microplastics have similar 
accumulative characteristics to heavy metals. 

The current assessment was unable to evaluate accumulation of organic and pharmaceutical 
chemicals due to data limitations. To account for this, the assessment was undertaken on a 
single application at the highest legitimate loading of sewage sludge to some extent account for 
uncertainties.  

To try to address some of the data limitations, and unknowns about long term use of sewage 
sludge, UKWIR have been conducting long-term field experiments on sewage sludge 
applications. Aspects included have been the effects on soil chemical, biological and physical 
properties, crop yield and quality, and benefits to soil quality, fertility, and nutrient supply. 
Similarly, long-term field trials in Sweden (which may be relevant to UK conditions) have been 
on-going since 1981. These trials have examined the effects of repeated applications of sewage 
sludge on crop yields, accumulation of organic contaminants including PFAS and brominated 
flame retardants and impacts on soil organisms such as earthworms. 

The UK government is reviewing regulations concerning land application of sewage sludge, 
septage, and biosolids and there are plans to incorporate the Safe Sludge Matrix UK level 
voluntary agreement into the new UK Agricultural Use of Sewage Sludge Regulations. Currently, 
UK legislation (and most other countries) only require testing for a limited set of potentially toxic 
elements (heavy metals and metalloids) in sewage sludge. There is recognition that this list 
needs expansion to include contaminants such as PFAS and microplastics. 
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5.4. Impacts on water quality 
As intimated in Sections 2 – 4, the application of sewage sludge to land can have several 
impacts on water quality. In these chapters, the focus has been on the contaminants of interest, 
and in this section wider impacts on water quality will be summarised. 

Sewage sludge is a fertilizer and is rich in plant nutrients. Excess nutrients, particularly nitrogen 
and phosphorus, from sewage sludge can leach into groundwater or run off into surface waters. 
This can lead to eutrophication of water bodies, causing algal blooms and potential oxygen 
depletion (Sing & Agrawal, 2008). 

As discussed above (Section 5.2), many contaminants (metals, organic and emerging 
chemicals, pharmaceuticals, microplastics and microorganisms/pathogens) will accumulate in 
soils over time and can migrate to water sources posing risks to aquatic ecosystems and human 
health (Corradini et al. 2019; Antoniadis et al. 2017; Clarke & Smith 2011; Gerba & Smith 2005). 
Figures 3.1 and 4.1 indicate the partitioning behaviour of the organic and pharmaceutical 
contaminants. Those chemicals with a greater propensity to partition to the water phase, will 
also be those that are most likely to migrate to aquatic environments. Similarly, in Section 2, 
leaching of microplastics from the soil system was assumed to be 0.2 % d-1 (Zhang et al., 2022). 
These plastics are thus most likely to end up in aquatic ecosystems where they have potential 
to impact negatively on aquatic organisms. If these microplastics also have chemicals sorbed 
to their surfaces, changes in chemistry in surface water or inside organisms may result in 
desorption thus delivering chemical pollutants at different exposure sites (see Section 5.1 
above). Effects on water quality may not be immediately apparent but can accumulate over 
time with repeated applications of sewage sludge (Smith 2009). 

The persistence of contaminants is just as relevant in the water environment as it is in the soil 
environment. Some of the contaminants of concern, such as PFAS, can have incredibly long 
half-lives reaching 100s if not 1000s of years. This has led the phrase ‘forever chemicals’ to be 
coined, where forever is indicative of >lifetime persistence.  

Linking back to the cocktail effect, the complex mixture of interacting chemicals produces 
various degradation by-products. Some of these will be already present in the wastewater 
stream prior to water treatment, others will arise during sludge processing, and further 
degradation by-products will arise once the sewage sludge has been applied to the soil. In 
nearly all cases, it is difficult to know where or how specific degradation products have arisen 
unless the process is monitored. Some degradation products will be more soluble that the 
parent compounds, thus increasing the impact on water quality. One example is TFA which is 
the extremely persistent degradation product of PFAS. While TFA is already present in 
wastewater streams prior to treatment and sludge manufacture, further TFA will arise over 
lifetime timescales as it is the terminal product of many PFAS degradation pathways (Arp et al. 
2024). Because of this, while noting that wastewater is only one source of environmental PFAS, 
TFA has been seen to accumulate in aquatic systems and now accounts for over 90% (by mass) 
of PFAS in drinking water sources (Neuwald et al. 2022). Another example is 
aminomethylphosphic acid (AMPA) which is a degradation by-product of glyphosate 
degradation. The AMPA is significantly more soluble than glyphosate, with global estimates 
suggesting that over 80% of river inputs (some 4000 tonnes per annum globally) are in the form 
of AMPA with the other 20% being glyphosate (Zhang et al. 2024). The impact of contamination 
in sewage sludge is not therefore limited to the site of application, indeed the impacts are far 
wider once contaminants and their degradation by-products reach the aquatic environment. 
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6. Overall conclusions 
This assessment focussed on the impacts of sewage sludge on soil biota resident in the 
receiving soil. As such, this assessment represents a more direct exposure compared to the 
2018 assessment (Scottish Government 2018) that was focussed on downstream impacts of 
sewage sludge use in agriculture on human health via the food chain. It would therefore be 
expected that impacts, when present, would be more acute. This was certainly the case using 
scenarios designed to simulate realistic worst-case scenarios where 21 potentially hazardous 
agents were estimated to pose a risk to soil biota. Those hazards that were prominent in the 
2018 assessment, returned a higher magnitude of risk in the current assessment. This makes 
sense given the more direct nature of the exposure and the possible increased vulnerability of 
soil biota compared to human beings. Note that risks to human health also merit re-assessment 
in the future, especially considering new scientific evidence that supports the need for updated 
human health risk assessments.  

The 21 highlighted agents are listed in table 5.1 along with possible mitigation measures. It 
should be noted that the chemicals included in the assessment were those that were possible 
to assess in a quantitative manner, with significantly more chemicals remaining unknown. It 
should also be noted that these potential risks have been identified as part of a robust 
theoretical mathematical exercise, successfully used in previous risk assessments (Scottish 
Government 2018; Longhurst et al., 2019:  Hough et al., 2012).  

 

Table 5.1 – List of potentially hazardous agents for which a quantitative estimate of appreciable 
risk to soil biota was possible 

Potentially 
hazardous 
agent 

Relative risk 
outcome 

Magnitude of 
risk (realistic 
worst case) 

Uncertainty Possible mitigation 

Microplastics RR>1 after 3 – 
10 applications 

Medium Medium Improved wastewater 
treatment processes – 
advanced membrane 
bioreactor technology 
can be effective 

PCBs 118, 180 RR>1 after 1 
application 

Medium - 
High 

Medium Manufacture of PCBs 
already banned 

PCBs 95, 52, 
174 

RR>1 after 1 
application 

Medium - 
Low 

Medium Manufacture of PCBs 
already banned 

Nonylphenol RR>1 after 1 
application 

High Medium • AD may reduce 
concentrations, but 
evidence 
compounded by 
ready transformation 
of NP2EO to NP 

• Activated carbon or 
biochar promising 
sorbant 

Nonylphenol-
diethoxylate 

RR>1 after 1 
application 

High High 

PFOS RR>1 after 1 
application 

low Medium 
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PFHxS RR>1 after 1 
application 

low High Improved treatment 
technologies all show 
promise: 
• Activated carbon or 

biochar 
• Ion Exchange 
• Membrane filtration 
• Advance oxidation 
• Electrochemical 

treatment 

PFOA RR>1 after 1 
application 

low Medium 

Cyclomethicone 
5 

RR>1 after 1 
application 

Medium - 
High 

Medium • Cycolmethicone 5 
readily degraded by 
aerobic treatment and 
AD  
• Cyclomethicone 6 
more likely to remain in 
sludges 

Cyclomethicone 
6 

RR>1 after 1 
application 

Medium - 
High 

Medium 

Triclocarban RR>1 after 1 
application 

Medium Medium Partial removal by 
thermal hydrolysis 

Benzothiazole RR>1 after 1 
application 

Medium High Should be removed 
during aerobic 
treatment 

Sertraline RR>1 after 1 
application 

Medium Medium NyexTM water treatment 
process is considered 
industry leading 
solution (Arvia, 2024) 

Norsertraline RR>1 after 1 
application 

Low - 
Medium 

Medium 

Tamoxifen RR>1 after 1 
application 

Medium High Ozonation effectively 
removes tamoxifen 
from wastewater 

Ranitidine RR>1 after 1 
application 

Low High • Activated 
carbon/biochar 

• Advanced oxidation / 
ozonation 

• Membrane filtration 
Ciprofloxacin RR>1 after 1 

application 
Low Medium • Sorption via 

ceramsite or 
magnetic metal-
organic frameworks 

• Advanced oxidation / 
ozonation 

Triclosan RR>1 after 1 
application 

Low Medium Activated sludge 
treatment is generally 
effective for removal 

 

This assessment has focussed on three priority contaminant groups, microplastics, organic and 
other emerging chemicals, and PPCPs, in support of the scientific interests of Fidra and 
emerging best practice and legislature. This analysis has not attempted to update all the hazard 
categories covered by the 2018 assessment (Scottish Government, 2018) and thus cannot draw 
any conclusions about other areas such as pathogens, anti-microbial resistance, and emerging 
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unregulated metals (such as the technology-critical elements). Sewage sludge is a very 
complex medium and its composition changes over time. Thus, the catalogue and magnitude of 
hazards is not fixed which makes sewage sludge particularly challenging to assess in a definitive 
way. As water treatment technology improves, a different set of hazards are likely to become 
priority and the current sludge use in agriculture regulations must be updated. Protecting 
environmental health is an on-going challenge. 

Overall, the direct exposure of soil and water ecosystems to contaminated sewage sludge can 
likely lead to acute impacts. These impacts are not exclusive to sewage sludge and can also be 
caused by the various other agricultural amendments containing the same variety and degree of 
potential hazards. Sewage sludge does have the potential to be a useful circular resource, 
adding nutrients and organic matter to the soil which benefits soil biota. However, how much 
these benefits outweigh the impacts from chemical and physical exposures can only currently 
be estimated. Whether any appreciable risks are long-lasting or reversible is unknown, as are 
the impacts from multiple applications over the years. There is also limited data available to 
determine long-term impacts on the soil ecosystem, which, paired with the unknown impacts of 
the ‘cocktail effect’ of these potential hazards and assumed persistence, indicates that a 
precautionary approach may be required. 

 

6.1. Recommendations 
1. Adopt the Precautionary Principle: Given the persistence, bioaccumulation and emerging 

nature of many contaminants, the report advocates for the adoption of precautionary 
measures to protect soil health and the wider environment. This may involve limiting the 
application of sewage sludge on agricultural land until more comprehensive risk data are 
available and includes adopting recommendations 2 – 7. 

2. Improve Wastewater Treatment: The report calls for the enhancement of wastewater 
treatment processes to reduce the levels of contaminants, especially microplastics, organic 
contaminants, and PPCPs, in sewage sludge. This includes upgrading treatment facilities 
and introducing stricter regulations on pollutant discharge. 

3. Increase Research on Emerging Contaminants: The study emphasizes the need for 
further research into the environmental risks posed by unregulated microplastic and 
emerging chemical contaminants. More data are needed to understand the long-term 
impacts of these substances on soil biota and the wider environment. 

4. Regular Monitoring of Contaminant Levels: The report recommends ongoing monitoring 
of chemical and microplastic contaminant levels in sewage sludge and agricultural soils. 
This will help identify trends in contamination and enable timely interventions to minimise 
environmental damage. 

5. Develop Alternative Treatment Technologies: To address the limitations of current 
wastewater treatment systems, the report suggests exploring new technologies for 
removing persistent and other contaminants from sewage sludge. 

6. Develop Enhanced Quality Standards: Encourage upstream source control solutions for 
reducing and/or eliminating contaminants in sewage sludge before recycling to land. 

7. Improved Sludge Use in Agriculture Policies: Widen scope of regulations to enforce 
appropriate management strategies and best practice to ensure soil health and the wider 
environment are protected from a more comprehensive range of contaminants. Build in 
flexibility and review processes, so that regulations adapt to changes in the contamination 
profile in a timely manner.  
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